首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   27篇
  国内免费   3篇
化学   469篇
晶体学   10篇
力学   19篇
数学   37篇
物理学   81篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2019年   11篇
  2018年   4篇
  2017年   8篇
  2016年   10篇
  2015年   16篇
  2014年   21篇
  2013年   23篇
  2012年   15篇
  2011年   38篇
  2010年   19篇
  2009年   21篇
  2008年   32篇
  2007年   37篇
  2006年   32篇
  2005年   39篇
  2004年   50篇
  2003年   22篇
  2002年   35篇
  2001年   7篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   11篇
  1995年   3篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1989年   6篇
  1988年   5篇
  1987年   7篇
  1986年   2篇
  1985年   6篇
  1984年   13篇
  1983年   9篇
  1982年   12篇
  1981年   9篇
  1980年   12篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1966年   2篇
排序方式: 共有616条查询结果,搜索用时 15 毫秒
81.
82.
Thermal stability of single-crystalline [ZnO]m[Zn0.7Mg0.3O]n multiple quantum wells (MQWs) grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy is reported. X-ray diffraction analysis revealed that these MQWs were grown as designed with a fixed Zn0.7Mg0.3O barrier width of and a series of ZnO well widths of . Cathodoluminescence spectra from these MQWs consisted of two major peaks; one was the emission from the bound excitons in Zn0.7Mg0.3O barrier layers, and the other was that from the confined excitons in ZnO well layers. These structural and optical properties were found to be dramatically changed by the ex situ annealing treatments over 700 °C. These changes were presumably due to the onset of phase separation of the Zn0.7Mg0.3O barrier layers with pronounced Mg diffusion toward the ZnO wells.  相似文献   
83.
Nanoporous metals can be fabricated by dealloying, which is one of the reactions that occur during the corrosion of alloys. Nanoporous gold has been widely investigated for several decades, and it has recently been found that other metals, such as platinum, palladium, nickel, and copper, can form nanoporous structures through the dealloying of binary alloys. This article mainly shows fabrication and properties of nanoporous palladium and nickel after introduction of nanoporous metals by referring to nanoporous gold as an example. It is necessary to select binary alloys with suitable elements, in which the dissolution of the less noble element and the aggregation of the nobler element at the solid/electrolyte interface are simultaneously allowed. Postprocessing by thermal or acid treatment alters the nanoporous structure. Various properties of nanoporous metals (including mechanical, catalytic, piezoelectric, hydrogenation, and magnetic ones) are different from those of bulk and nanocrystalline materials and nanoparticles because of their specific three-dimensional network structures consisting of nanosized pores and ligaments. Hydrogenation and magnetic properties are reviewed in terms of lattice strain at curved surfaces. These new metallic nanomaterials are now being investigated from the viewpoint of functional applications, and provide much room for study in various fields.  相似文献   
84.
Nanoporous Ni specimens with ligament lengths of 10–210 nm and specific surface areas of 0.03–0.58 nm?1 were fabricated by the dealloying of Ni0.25Mn0.75 alloy and annealing at 473–873 K, and saturation magnetization investigated in terms of their size dependence. Saturation magnetization decreased with decreasing ligament length or increasing specific surface area. This trend is the same as that for nanoparticle Ni. However, the saturation magnetization of nanoporous Ni tends to be lower than that of the nanoparticle Ni when their specific surface areas are the same. It is suggested, therefore, that the surface effect due to a noncollinear arrangement is enhanced by the surface defects in the nanoporous Ni.  相似文献   
85.
86.
We have realized the microscopic simulation of olefin polymerization, that is, the simulation of the catalytic polymerization (CP) reaction system composed of (pyridylamido)hafnium(IV) complex as the catalyst. For this purpose, we adopted Red Moon (RM) method, a novel molecular simulation method to simulate the complex reaction system. First, according to the previous research, with the help of the QM calculation, we proposed a model system and elementary processes and explained the theoretical treatment of the simulation by the RM method (the RM simulation). In addition, we also proposed a macroscopic simulation based on chemical kinetics simulation. Then, we performed two simulations and compared them in terms of the effective time evolution of the three macroscopic physical quantities, the number-average molecular weight Mn , the mass-average molecular weight Mw , and the molar-mass dispersity ĐM . The comparison showed that the two simulations are in quantitative or partially qualitative agreement with each other. Therefore, it is concluded that the RM simulation could not only simulate the CP reaction process microscopically, but also it is connected essentially to reproduce the time evolution of the macroscopic physical quantities on the basis of its microscopic simulation data. © 2018 Wiley Periodicals, Inc.  相似文献   
87.
88.
Secondary batteries such as Li‐ion battery are expected to be utilized as not only ubiquitous electric power sources such as mobile phones but also large‐scale electricity storage devices. Therefore, it is urgent to develop the higher performance secondary batteries. Their lifetime and stability are found to be strongly dependent on the nature of passivation film called solid electrolyte interphase (SEI) film formed on the anode surface in the initial charge‐discharge cycle. However, since it is difficult to directly observe the film formation processes in experiment, its microscopic mechanism is still not found. On the other hand, although the theoretical methods are useful complement to the experiment, some new methodologies are necessary to understand the long‐term processes of SEI film, which is produced as a result of that a lot of chemical reactions proceed simultaneously. Under the circumstances, we have developed Red Moon method that can simulate such complex chemical reaction systems, and were able to analyze for the first time the SEI film formation processes on the anode surface at the atomistic level. Then, we clarified theoretically the microscopic mechanism of the additive effect which is essential to improve the Na‐ion battery performance so as to enhance the SEI film formation. This new microscopic insight must provide an important guiding principle for use in designing the most suitable electrolytes for developing high‐performance secondary batteries.  相似文献   
89.
ZnO deposited on nanoporous Au showed photocatalytic decomposition toward methyl orange under visible light, unlike ZnO sputtered on flat Au without a nanoporous structure. First-principles calculations suggested that the surface lattice disorder in nanoporous Au induced a band gap narrowing and a large built-in electric field in the adjacent ZnO, resulting in the visible-light photocatalytic response.  相似文献   
90.
Mizoroki‐Heck coupling polymerization of 1,4‐bis[(2‐ethylhexyl)oxy]‐2‐iodo‐5‐vinylbenzene ( 1 ) and its bromo counterpart 2 with a Pd initiator for the synthesis of poly(phenylenevinylene) (PPV) was investigated to see whether the polymerization proceeds in a chain‐growth polymerization manner. The polymerization of 1 with tBu3PPd(Tolyl)Br ( 10 ) proceeded even at room temperature when 5.5 equiv of Cy2NMe (Cy = cyclohexyl) was used as a base, but the molecular weight distribution of PPV was broad. The polymerization of 2 hardly proceeded at room temperature under the same conditions. In the polymerization of 1 , PPV with H at one end and I at the other was formed until the middle stage, and the polymer end groups were converted into tolyl and H in the final stage. The number‐average molecular weight (Mn) did not increase until about 90% monomer conversion and then sharply increased after that, indicating conventional step‐growth polymerization. The occurrence of step‐growth polymerization, not catalyst‐transfer chain‐growth polymerization, may be interpreted in terms of low coordination ability of H‐Pd(II)‐X(tBu3P) (X = Br or I), formed in the catalytic cycle of the Mizoroki‐Heck coupling reaction, to π‐electrons of the PPV backbone; reductive elimination of H‐X from this Pd species with base would take place after diffusion into the reaction mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 543–551  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号