首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   907篇
  免费   19篇
  国内免费   3篇
化学   722篇
晶体学   14篇
力学   19篇
数学   46篇
物理学   128篇
  2023年   6篇
  2021年   6篇
  2020年   7篇
  2019年   13篇
  2018年   10篇
  2017年   10篇
  2016年   14篇
  2015年   16篇
  2014年   14篇
  2013年   47篇
  2012年   41篇
  2011年   43篇
  2010年   26篇
  2009年   31篇
  2008年   49篇
  2007年   60篇
  2006年   61篇
  2005年   49篇
  2004年   53篇
  2003年   50篇
  2002年   38篇
  2001年   14篇
  2000年   17篇
  1999年   10篇
  1998年   15篇
  1997年   11篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   7篇
  1992年   5篇
  1991年   6篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1986年   5篇
  1985年   16篇
  1984年   20篇
  1982年   12篇
  1981年   13篇
  1980年   5篇
  1979年   7篇
  1978年   11篇
  1977年   14篇
  1976年   9篇
  1975年   4篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1967年   3篇
排序方式: 共有929条查询结果,搜索用时 15 毫秒
11.
The structure and hydrogen bonding of water in the vicinity of carboxybetaine homopolymer (poly[1-carboxy-N,N-dimethyl-N-(2'-methacryloyloxyethyl)methanaminium inner salt] (PolyCMB), and a random copolymer of CMB and n-butyl methacrylate, Poly(CMB-r-BMA), with various molecular weights were analyzed in their aqueous solutions and thin film with contours of O-H stretching of Raman and attenuated total reflection infrared (ATR-IR) spectra, respectively. The relative intensity of the collective band (C value) corresponding to a long-range coupling of O-H stretchings of the Raman spectra for aqueous solution of Poly(CMB-r-BMA) was very close to that for pure water, which is in contrast with the smaller C value in aqueous solution of ordinary polyelectrolytes. The number of hydrogen bonds collapsed by the presence of one monomer residue (N(corr) value) of PolyCMB and Poly(CMB-r-BMA) (CMB, 45 mol %) (M(w), 1.14 x 10(4) and 1.78 x 10(4), respectively) could be calculated from the C value. The N(corr) values were much smaller than those for ordinary polyelectrolytes and close to those for nonionic water-soluble polymers such as poly(ethylene glycol) and poly(N-vinylpyrrolidone). Furthermore, a water-insoluble Poly(CMB-r-BMA) with a large BMA content (M(w) = 347 kD, CMB 27 mol %) could be cast as a thin film (thickness, ca. 10 microm) on a ZnSe crystal for the ATR-IR analyses. At an early stage of sorption of water into the Poly(CMB-r-BMA) film, the O-H stretching band of IR spectra for the water incorporated in the film was similar to that for free water, which is in contrast with the drastic change in the O-H stretching band of water incorporated in polymer films such as poly(methyl methacrylate) (PMMA) and poly(n-butyl methacrylate) (PBMA). The theoretical vibrational frequency for water molecules hydrating a betaine molecule calculated by using a density functional method supported the experimental results. The adhesion of human platelets to Poly(CMB-r-BMA) films was much less than that to PMMA and PBMA. With an increase in the content of CMB residue, the number of platelets adhered to the Poly(CMB-r-BMA) film drastically decreased and then gradually increased, probably due to the increase in the roughness of the film surface. These results suggest that the carboxybetaine monomer residues with a zwitterionic structure do not significantly disturb the hydrogen bonding between water molecules in both aqueous solution and thin film systems, resulting in the excellent blood-compatibility of the carboxybetaine polymers.  相似文献   
12.
Detailed studies have been conducted to determine the activity of palladium catalysts for the amination of five-membered heterocyclic halides and to determine the factors that control the scope of this reaction. Palladium-catalyzed aminations of the electron-rich furanyl, thiophenyl, and indolyl halides and of the related 2-halogenated thiazoles, benzimidazole, and benzoxazole have been shown to occur with a subset of amines. Various combinations of palladium precursors and P(t)Bu(3) were tested as catalysts for reaction of 3-bromothiophene with N-methylaniline, and the fastest reactions occurred with the Pd(I) dimer, [PdBr(P(t)Bu(3))](2). The fastest aminations of thiazoles, benzimidazoles, and benzoxazoles occurred with the combination of palladium trifluoroacetate and P(t)Bu(3) as catalyst.  相似文献   
13.
The complex bis-(N,N-dimethyl-1,2-ethanediamine) nickel(II) perchlorate undergoes a first-order thermochromic phase transition at ca. 476 K, changing its color from orange to red. The room temperature X-ray crystal structure determination showed that the nickel ion possesses a square-planar geometry with two five membered chelate rings, in the δλ conformation, forming the NiN4 chromophore. The broad-line 1H NMR indicates the onset of a dynamic disorder of diamine chelate rings at the phase transition temperature region, while T1 measurement of 1H affords the activation energy of the puckering metal chelate rings to be 26 kJ mol−1. The electronic spectrum revealed that a weakening of ligand field around the nickel is associated with the phase transition.  相似文献   
14.
Abstract— The absorption and fluorescence spectra, and the fluorescence lifetime of acridine orange (AO) were measured in a wide range of the sodium dodecyl sulfate (SDS) concentration below and above the critical micelle concentration (cmc). The fluorescence consisted of two components with different lifetimes; short (<3 ns) and long (>3 ns). The short and long lifetime components are attributed to the AO monomer and dimer associated with detergent, respectively. The lifetime of the dimer increased with increasing the SDS concentration just below the cmc. It decreased suddenly to a constant value just above the cmc. The lifetime of the monomer showed only a slight increase in the concentration range of SDS employed.  相似文献   
15.
A new-type of sol-gel/organic hybrid composite material using gelatin or chitosan with tetramethoxysilane was developed for the bovine serum albumin (BSA)-encapsulated monolithic column for capillary electrochromatography (CEC). The composite monolith was used to immobilize BSA in a fused-silica capillary. The addition of gelatin and chitosan to the alkoxysilane enabled the enantioseparation of Trp. A very small amount of these polymers were effective for the enantioseparation. Especially, the monolithic column prepared from chitosan with tetramethoxysilane showed a high enantioselectivity for Trp enantiomers and the value (alpha' = t2/t1, t1: fast eluted enantiomer, t2: second eluted enantiomer) reached 1.15 on CEC mode. Furthermore, the composite materials exhibited a higher stability compared to the silica sol-gel column. These results showed that the sol-gel/organic hybrid composite was useful as a monolithic matrix for the BSA-encapsulated column for CEC.  相似文献   
16.
[reaction: see text] The reaction of 2-methoxy-3H-azepines, in the presence or absence of a nucleophile, with N-bromosuccinimide (NBS) gave a regioselective 1,4-adduct from which the corresponding 2H-azepine derivatives were formed via base-promoted hydrogen bromide elimination, generally in moderate to quantitative yield. Competitive formation of 4-bromo-2-methoxy-3H-azepine by electrophilic substitutuion or 3H-azepin-2-yl 2H-azepin-2-yl ether by transetherification was minimized at lower reaction temperatures. Quantitative substitution of 2-(2',4',6'-trichlorophenoxy)-2H-azepine derivatives, formed in moderate yield from the respective 3H-azepine and NBS in the presence of 2,4,6-trichlorophenol (TCP), by various nucleophiles gave the corresponding 2-substituted 2H-azepine. Among these nucleophiles were alkanethiol and alkylamine that are not tolerated in the reaction of 3H-azepine and NBS.  相似文献   
17.
Rate constants for hydrogen atom abstraction by methyl radicals in methanol glasses have been measured from 100 to 15 K. The Arrhenius plot is nonlinear and the reaction rate constant appears to reach a limiting value below 40 K. The results are discussed in terms of simple models for quantum-mechanical tunneling in the solid state at low temperatures. Assuming that the methyl group rotation in methanol brings about a merging of the energy level distribution at the potential barrier, the observation of temperature-independent rate constants below 40 K may be attributable to a freezing out of this rotation such that tunneling occurs only from the zero-point vibrational level.  相似文献   
18.
Noncatalytic reaction pathways and rates of dimethyl ether (DME) in supercritical water are determined in a tube reactor made of quartz according to liquid- and gas-phase 1H and 13C NMR observations. The reaction is studied at two concentrations (0.1 and 0.5 M) in supercritical water at 400 degrees C and over a water-density range of 0.1-0.6 g/cm3. The supercritical water reaction is compared with the neat one (in the absence of solvent) at 0.1 M and 400 degrees C. DME is found to decompose through (i) the proton-transferred fragmentation to methane and formaldehyde and (ii) the hydrolysis to methanol. Formaldehyde from reaction (i) is consecutively subjected to four types of redox reactions. Two of them proceed even without solvent: (iii) the unimolecular proton-transferred decarbonylation forming hydrogen and carbon monoxide and (iv) the bimolecular self-disproportionation generating methanol and carbon monoxide. When the solvent water is present, two additional paths are open: (v) the bimolecular self-disproportionation of formaldehyde with reactant water, producing methanol and formic acid, and (vi) the bimolecular cross-disproportionation between formaldehyde and formic acid, yielding methanol and carbonic acid. Methanol is produced through the three types of disproportionations (iv)-(vi) as well as the hydrolysis (ii). The presence of solvent water decelerates the proton-transferred fragmentation of DME; the rate constant is reduced by 40% at 0.5 g/cm3. This is caused by the suppression of low-frequency concerted motion corresponding to the reaction coordinate for the simultaneous C-O bond scission and proton transfer from one methyl carbon to the other. In contrast to the proton-transferred fragmentation, the hydrolysis of DME is markedly accelerated by increasing the water density. The latter becomes more important than the former in supercritical water at densities greater than 0.5 g/cm3.  相似文献   
19.
We previously theorized that, since the stereoselectivity of anomeric radical reactions is significantly influenced by the kinetic anomeric effect, which can be controlled by restricting the conformation of the radical intermediate, the proper conformational restriction of the pyranose ring of the substrates would therefore make highly alpha- and beta-stereoselective anomeric radical reactions possible. This theory was based on our previous results of the anomeric radical reactions with d-xylose derivatives as the substrates. We herein report the anomeric radical deuteration reactions with the conformationally restricted 1-phenylseleno-d-glucose derivatives, 2g and 3g, restricted in a (4)C(1)-conformation by an O-cyclic diketal moiety, and 4g, 5g, 6g, 7g, and 8g, restricted in a (1)C(4)-conformation by bulky O-silyl protecting groups. The radical deuterations with Bu(3)SnD, using the (4)C(1)-restricted substrates 2g and 3g, afforded the corresponding alpha-products (alpha/beta = 98:2) highly stereoselectively, whereas the (1)C(4)-restricted substrate 6g, having a trigonal (sp(2)) carbon substituent, i.e., -CHO, at the 5-position, selectively gave the beta-products (alpha/beta = 0:100). Thus, the stereoselectivity was significantly increased by the conformational restriction and was completely inverted by changing the substrate conformation from the (4)C(1)-form to the (1)C(4)-form. On the other hand, the deuterations with the (1)C(4)-restricted substrates 4g and 5g showed that the 1,5-steric effect due to the tetrahedral carbon substituent (-CH(2)OTIPS or -CH(2)OH) at the 5-axial position dominantly prevented the hydride transfer from the beta-face competing with the kinetic anomeric effect. This study suggests that, depending on the restricted conformation of the substrates to the (4)C(1)- or the (1)C(4)-form, the alpha- or beta-products would be obtained highly stereoselectively via anomeric radical reactions of hexopyranoses.  相似文献   
20.
The site-selective H/D exchange reaction of phenol in sub- and supercritical water is studied without added catalysts. In subcritical water in equilibrium with steam at 210-240 degrees C, the H/D exchange proceeds both at the ortho and para sites in the phenyl ring, with no exchange observed at the meta site. The pseudo-first-order rate constants are of the order of 10(-4) s(-1); 50% larger for the ortho than for the para site. In supercritical water, the exchange is observed also at the meta site with the rate constant in the range of 10(-6)-10(-4) s(-1). As the bulk density decreases, the exchange slows down and the site selectivity toward the ortho is enhanced. The enhancement is due to the phenol-water interaction preference at the atomic resolution. The site selectivity toward the ortho is further enhanced when the reaction is carried out in benzene/water solution. Using such selectivity control and the reversible nature of the hydrothermal deuteration/protonation process, it is feasible to synthesize phenyl compounds that are deuterated at any topological combination of ortho, meta, and para sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号