首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   6篇
化学   253篇
晶体学   9篇
力学   8篇
数学   28篇
物理学   78篇
  2023年   2篇
  2022年   6篇
  2021年   2篇
  2019年   6篇
  2018年   3篇
  2017年   3篇
  2016年   9篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   20篇
  2011年   17篇
  2010年   10篇
  2009年   11篇
  2008年   21篇
  2007年   25篇
  2006年   20篇
  2005年   15篇
  2004年   25篇
  2003年   19篇
  2002年   19篇
  2001年   12篇
  2000年   8篇
  1999年   13篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   2篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1985年   6篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1977年   3篇
  1975年   1篇
  1974年   3篇
  1973年   6篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有376条查询结果,搜索用时 15 毫秒
161.
162.
Lung surfactant (LS), a lipid–protein mixture responsible for alveolar stability, is inhibited by serum proteins leaked into the lungs in disease. Interaction of bovine lipid extract surfactant (BLES), a clinical replacement lung surfactant, with serum protein fibrinogen (Fbg) was studied employing various structural and biophysical techniques in adsorbed films and bulk bilayer dispersions. Surface tension area isotherms of the adsorbed films revealed the suppression of interfacial activity of BLES by Fbg (adsorption and surface tension reduction). Fbg, predominantly associated with the fluid phase of BLES films, resulted in the aggregation of the gel lipid domains as evidenced by atomic force microscopy. BLES bilayer dispersion showed phase transition from a diffused gel to liquid–crystalline phase in the temperature range 10–35 °C as studied by differential scanning calorimetry (DSC). Fbg resulted in the shift of peak to a higher transition temperature for the maximal heat flow (T max) of BLES dispersions. Combined Raman and FTIR spectral studies of the BLES/Fbg dispersions revealed that Fbg altered the –CH2–, –CH3, and –PO4 ? vibrational modes of the phospholipids present in BLES, suggesting the condensing and dehydrating effect of the protein on surfactant. Studies suggest that Fbg, by directly interacting with the gel lipids in LS in bulk dispersions, alter the packing of the films formed at the interface, and can be used as a specific model for lung disease.  相似文献   
163.
Purpose of the present research work was to evaluate the biological distribution of differently size gold nanoparticles (NP) up on intravenous administration in mice. Another objective was to study effect of particle size on biological distribution of gold NP to enable their diverse applications in nanotechnology. Gold NP of different particle sizes, mainly 15, 50, 100 and 200nm, were synthesized by modifying citrate ion concentration. Synthesized gold nanoparticles were characterized by SEM and their size distribution was studied by particle size analyzer. Gold NP was suspended in sodium alginate solution (0.5%, w/v) and administered to mice (1g/kg, intravenously) [n=3]. After 24h of administration of gold NP, blood was collected under light ether anesthesia, mice were sacrificed by cervical dislocation and various tissues/organs were removed. The tissues were then washed with saline, homogenized and lysed with aqua regia. The determination of gold in samples was carried out quantitatively by inductively coupled plasma mass spectrometry (ICP-MS). SEM study revealed spherical morphology of gold NP with narrow particle size distribution. Biodistribution study revealed gold NPs of all sizes were mainly accumulated in organs like liver, lung and spleen. The accumulation of gold NP in various tissues was found to be depending on particle size. 15nm gold NP revealed higher amount of gold and number of particles in all the tissues including blood, liver, lung, spleen, kidney, brain, heart, stomach. Interestingly, 15 and 50nm gold NP were able to pass blood-brain barrier as evident from gold concentration in brain. Two-hundred nanometers gold NP showed very minute presence in organs including blood, brain, stomach and pancreas. The results revealed that tissue distribution of gold nanoparticles is size-dependent with the smallest 15nm nanoparticles showing the most widespread organ distribution.  相似文献   
164.
Purpose of the present work was to study in vitro permeation of gold nanoparticles (NPs) through isolated rat skin and intestine. Another objective was to see the effect of particle size on permeation of the gold NP. Gold NP of 15 nm, 102 nm and 198 nm were synthesized and used for study. Franz diffusion cells were used to evaluate permeation of gold NP from rat skin whereas 'intestinal sac' method was used for assessing intestinal permeation. Number density of gold NP was analyzed by UV-vis spectroscopy whereas amount of gold permeated was measured by ICP mass spectrometry. The absorption and localization of gold NP through rat skin was studied by TEM. Qualitative analysis of gold inside of the rat skin was performed by energy dispersive X-ray spectroscopy (EDS). Gold NP showed negative zeta potential. UV-vis absorption spectra of 15 nm, 102 nm and 198 nm gold NP showed lambda(max) at 520 nm, 535 nm and 577 nm, respectively. SEM study revealed spherical morphology of NP. Gold NP showed size dependent permeation through rat skin and intestine. 15 nm gold NP showed higher permeation compared to 102 nm and 198 nm gold NP. Interestingly, 102 nm and 198 nm gold NP showed lag time of 3h and 6h in case of rat skin only. As the size of the gold NP increased, permeability coefficient and diffusion coefficient was found to be decreased. The permeation of gold NP through intestine was higher than that of skin. TEM study of rat skin revealed accumulation of smaller size gold NP in deeper region of skin whereas larger particles were observed mainly in epidermis and dermis. Presence of gold inside of rat skin was confirmed by EDS. Gold NP would be an interesting carrier for transdermal as well as for oral delivery. The study demonstrated initial proof of concept of percutaneous permeation of smaller size gold particles.  相似文献   
165.
Poly(lactide-co-glycolide), PLGA, microspheres containing blue dextran as a hydrophilic model drug were prepared by a solvent evaporation method from w/o/w emulsions using a micro homogenizer. Effects of surfactant concentration in oil phase, stirring time period and stirring rate in the preparation procedure of primary emulsion (w/o) upon drug-loading efficiency were evaluated. Stirring rate during preparation of primary emulsion and surfactant concentration in oil phase affected drug-loading efficiency and the particle size of primary emulsion. Microspheres having the higher drug-loading efficiency were obtained when size differences between the primary emulsions and the secondary ones were large. That is, when the diameter of the primary emulsion is much smaller than that of the secondary emulsion, PLGA microspheres with high-loading efficiency of blue dextran were obtained.  相似文献   
166.
Monodisperse poly(lactide-co-glycolide) (PLGA) microspheres containing rifampicin (RFP), anti-tubercle drug, as hydrophobic model drug were prepared by solvent evaporation method with a membrane emulsification technique using Shirasu Porous Glass (SPG) membranes. Five kinds of rifampicin-loaded PLGA (RFP/PLGA) microspheres with different sizes were prepared by changing pore size of the membranes. Effect of polyethylene glycol (PEG) added to polyvinyl alcohol (PVA) solution (continuous phase) upon the monodispersity of microspheres was studied. PEG was used as a stabilizer for microspheres dispersing in PVA solution. The most suitable molecular weight of PEG as a stabilizer was 20,000. RFP/PLGA microspheres prepared with PEG20000 were apparently more uniform than those prepared without PEG. The yield of RFP/PLGA microspheres was 100%. The initial burst observed in the release of RFP from RFP/PLGA microspheres was suppressed by the addition of PEG.  相似文献   
167.
Kazuishi Makino 《Tetrahedron》2009,65(45):9468-7372
(2S,3R)- and (2R,3R)-2,3-Diaminobutanoic acid (Dab) derivatives were efficiently synthesized from Cbz-(R)-alanine using the proline-catalyzed diastereoselective α-hydrazination reaction and the SmI2-promoted reductive cleavage of the N-N bond as the key steps.  相似文献   
168.
The special-purpose computer GRAPE-2A accelerates the calculation of pairwise interactions in many-body systems. This computer is a back-end processor connected to a host computer through a Versa Module Europe (VME) bus. GRAPE-2A receives coordinates and other physical data for particles from the host and then calculates the pairwise interactions. The host then integrates an equation of motion by using these interactions. We did molecular dynamics simulations for two systems of liquid water: System 1 (1000 molecules), and System 2 (1728 molecules). The time spent for one step of molecular dynamics was 3.9 s (System l), and 10.2 s (System 2). The larger the molecular system, the higher the performance. The speed of GRAPE-2A did not depend on the formula describing the pairwise interaction. The cost performance was about 20 times better than that of the fastest workstations available today, and GRAPE-2A cost only $22,000. © 1994 by John Wiley & Sons, Inc.  相似文献   
169.
Temperature-sensitive hydrophilic gel microcapsules have been newly prepared. That is, poly ( -lysineisopropylamide–terephthalic acid) microcapsules containing water have been obtained by an interfacial polymerization at a water/oil interface between -lysineisopropylamide and terephthaloyldichloride. The microcapsule changes its size between 33 and 35°C. Under 33°C, the microcapsules are fully spherical and can be redispersed in distilled water, while are aggregated above 35°C. The microcapsules, which are observed to show aggregation above 33°C, can be redispersed by decreasing temperature within a few second. The thermosensitive morphological changes of the microcapsules are thus reversible. Also, it has been shown that the permeability of sodium chloride through the microcapsule membrane changes remarkably between 33 and 35°C, while it is kept almost constant independent of temperature between 25 and 33°C or between 35 and 55°C. The permeability of solutes is higher under 33°C than that above 35°C. Such thermosensitive properties result from the fact that the polymer membrane has isopropylamide groups. That is, -lysineisopropylamide has a chemical structure similar to N-isopropylacrylamide, the polymer of which, poly (N-isopropylacrylamide), is a thermosensitive hydrogel having its phase transition temperature around 33°C.  相似文献   
170.
Thermal reactions of the binary alkali salts of poly(carboxylic acid)–brominated carboxylic acid such as sodium or potassium poly(4-vinylbenzoate)-2-bromopropanoate [Na or K (PVBA-2-BPA)] in bulk were investigated. A methanol solution of binary acids was prepared by fixing the molar ratio of the repeating unit of polymeric acid to the fraction of brominated carboxylic acid. The binary salts were prepared by the neutralization of the binary acid solution. The product of the thermal reaction followed by esterification was identified as a graft copolymer containing PVBA in the main chain and polylactic acid in the side chain. The reaction of 1/15 K (PVBA-2-BPA) at 120 °C for 2 h yielded the highest percentage of grafting (300%). The grafting proceeded gradually for the initial 2 h and then somewhat. Reactivity of the K salt was higher than that of the corresponding Na salt. The thermal reaction of 1/10 K [polymethacrylate-2-BPA (PMA-2-BPA)] at 120 °C for 2 h also yielded a graft copolymer, and the percentage of grafting was 300%. However, reaction temperatures higher than 120 °C caused homopolycondensation of K 2-BPA prior to grafting, and homopolycondensation occurred prior to grafting in the reaction with Na (PMA-2-BPA). © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1877–1885, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号