首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   15篇
  国内免费   4篇
化学   227篇
晶体学   6篇
数学   23篇
物理学   31篇
  2023年   5篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   8篇
  2018年   8篇
  2017年   2篇
  2016年   9篇
  2015年   6篇
  2014年   7篇
  2013年   21篇
  2012年   39篇
  2011年   23篇
  2010年   13篇
  2009年   7篇
  2008年   18篇
  2007年   21篇
  2006年   12篇
  2005年   15篇
  2004年   13篇
  2003年   9篇
  2002年   10篇
  2001年   2篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
101.
102.
We consider certain natural (ℤ2)n actions on real Grassmann and flag manifolds andS 1 actions on complex Grassmann manifolds with finite stationary point sets and determine completely which of them bound equivariantly.  相似文献   
103.
This account summarizes our recent efforts in designing a good number of important organic transformations leading to the synthesis of biologically relevant compounds at room temperature and pressure. Currently, the concept of green chemistry is globally acclaimed and has already advanced quite significantly to emerge as a distinct branch of chemical sciences. Among the principles of green chemistry, one principle is dedicated to the “design of energy efficiency” – that is, to develop synthetic strategies that require less or the minimum amount of energy to carry out a specific reaction with optimum productivity – and the most effective way to save energy is to develop strategies/protocols that are capable enough to carry out the transformations at ambient temperature! As part of on‐going developments in green synthetic strategies, the design of reactions under ambient conditions coupled with other green aspects is, thus, an area of current interest. The concept of developing reaction strategies at room temperature and pressure is now an emerging field of research in organic chemistry and is progressing steadily. This account is aimed to offer an overview of our recent research works directly related to this particular field of interest, and highlights the green chemistry practice leading to carbon–carbon and carbon–heteroatom bond‐forming reactions of topical significance. Green synthetic routes to a variety of biologically relevant organic molecules (heterocyclic, heteroaromatic, alicyclic, acyclic, etc.) at room temperature and pressure are discussed.

  相似文献   

104.
Bimetallic Au-Pt nanoparticles have been generated inside a relatively porous SiO2 film matrix by a two-layer (2L) coating methodology. Two overlapping coating layers were deposited on glass substrates from Au- and Pt-doped inorganic-organic hybrid silica sols and air dried at 60 degrees C. The 2L coating assembly was then UV- and followed by heat-treated at 450 and 550 degrees C in air. UV-treatment decomposes AuCl(4)(-) and PtCl(6)(2-) ions in the respective layers and the subsequent heat treatment in air influences the diffusion of Au and Pt nanometals to each other to form bimetallic Au-Pt nanoparticles inside the silica matrix. A UV-visible study showed damping of Au-plasmon after heat treatments. GIXRD and TEM analyses reveal the formation of a partial Au/Pt solid solution with a small fraction of Pt ( approximately 16%), while the major fraction of Pt remains fused with the Au(Pt) solid solution.  相似文献   
105.
A new chromophoric low molecular weight (LMW) organic molecule, 1, was synthesized, and it forms gels in various organic solvents including toluene, o-xylene, m-xylene and p-xylene. The resultant gel phase materials exhibit enhanced and red-shifted fluorescence emission in the respective gelling solvents. This gelator molecule is self-assembled using various noncovalent interactions including hydrogen bonding, pi-pi staking and van der Waals interactions to get the gel phase materials. The molecule 1 is very weakly fluorescent in solution, but its intensity is increased by almost 40 times in their respective gelled state depending on the nature of the gelling solvents. Self-assembly of this molecule in the above-mentioned organic solvents gives an elongated nanofibrillar network that can be visualized through Field Emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM).  相似文献   
106.
After more than three decades of extensive investigations on supramolecular polymers, strategies for self-limiting growth still remain challenging. Herein, we exploit a new V-shaped monomer design to achieve anticooperatively formed oligomers with superior robustness and high luminescence. In toluene, the monomer-oligomer equilibrium is shifted to the monomer side, enabling the elucidation of the molecular packing modes and the resulting (weak) anticooperativity. Steric effects associated with an antiparallel staircase organization of the dyes are proposed to outcompete aromatic and unconventional B−F⋅⋅⋅H−N/C interactions, restricting the growth at the stage of oligomers. In methylcyclohexane (MCH), the packing modes and the anticooperativity are preserved; however, pronounced solvophobic and chain-enwrapping effects lead to thermally ultrastable oligomers. Our results shed light on understanding anticooperative effects and restricted growth in self-assembly.  相似文献   
107.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   
108.
The new indole derivative, 5,5′′-Difluoro-1H,1′′H-[3,3′:3′,3′′-terindol]-2′(1′H)-one C24H15F2N3O, is synthesized in 87% yield, and its crystal structure is determined by X-ray structure analysis. The crystals are monoclinic, sp. gr. P21/n, a = 15.4563(7), b = 10.8340(6), c = 16.4718(6) Å, β = 102.403(4)°, Z = 4. Bicyclic indole moieties form dihedral angle of 61.92(5)° with each other; the oxindole ring is twisted with respect to them at angles of 85.70(5)° and 75.62(5)°. The crystal structure is stabilized by N–H···O and C–H···O hydrogen bonds involving both the DMSO solvent molecules. In addition, one C–H···π interaction is observed.  相似文献   
109.
Anthracene-labelled ureidopyridyl sensor 1 was designed and synthesized. The emission of the sensor increased in presence of dicarboxylates. The binding properties were studied using 1H NMR, fluorescence and UV-vis spectroscopic methods. The sensor 1 shows modest selectivity for 1,4-phenylenediacetate.  相似文献   
110.
A new receptor has been designed and synthesized for selective recognition of anions through hydrogen bonding and electrostatic interactions. The recognition ability has been studied by fluorescence, UV-vis and 1H NMR spectroscopic methods. The results demonstrate that the receptor exhibits good recognition ability towards anions and shows strong binding to AcO, and F.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号