首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2307篇
  免费   87篇
  国内免费   10篇
化学   1800篇
晶体学   19篇
力学   28篇
数学   114篇
物理学   443篇
  2023年   15篇
  2022年   24篇
  2021年   23篇
  2020年   26篇
  2019年   34篇
  2018年   36篇
  2017年   22篇
  2016年   58篇
  2015年   46篇
  2014年   51篇
  2013年   104篇
  2012年   175篇
  2011年   149篇
  2010年   79篇
  2009年   95篇
  2008年   157篇
  2007年   148篇
  2006年   154篇
  2005年   134篇
  2004年   105篇
  2003年   95篇
  2002年   67篇
  2001年   41篇
  2000年   46篇
  1999年   19篇
  1998年   20篇
  1997年   19篇
  1996年   18篇
  1995年   20篇
  1994年   15篇
  1993年   17篇
  1992年   27篇
  1991年   23篇
  1990年   25篇
  1988年   20篇
  1987年   14篇
  1986年   18篇
  1985年   28篇
  1984年   19篇
  1983年   16篇
  1982年   19篇
  1981年   14篇
  1980年   13篇
  1979年   16篇
  1978年   20篇
  1976年   17篇
  1975年   13篇
  1974年   14篇
  1971年   8篇
  1969年   12篇
排序方式: 共有2404条查询结果,搜索用时 15 毫秒
131.
Hematopoietic stem and progenitor cell (HSPC) transplantation is a curative treatment of hematological disorders that has been utilized for several decades. Although umbilical cord blood (UCB) is a promising source of HSPCs, the low dose of HSPCs in these preparations limits their use, prompting need for ex vivo HSPC expansion. To establish a more efficient method to expand UCB HSPCs, we developed the bioactive peptide named SL-13R and cultured UCB HSPCs (CD34+ cells) with SL-13R in animal component-free medium containing a cytokine cocktail. Following 9 days of culture with SL-13R, the numbers of total cells, CD34+, CD38− cells, and hematopoietic stem cell (HSC)-enriched cells were significantly increased relative to control. Transplantation of cells cultured with SL-13R into immunodeficient NOD/Shi-scid/IL-2Rγ knockout mice confirmed that they possess long-term reconstitution and self-renewal ability. AHNAK, ANXA2, and PLEC all interact with SL-13R. Knockdown of these genes in UCB CD34+ cells resulted in reduced numbers of hematopoietic colonies relative to SL-13R-treated and non-knockdown controls. In summary, we have identified a novel bioactive peptide SL-13R promoting expansion of UCB CD34+ cells with long-term reconstitution and self-renewal ability, suggesting its clinical use in the future.  相似文献   
132.
We propose a novel quasi-phase-matched (QPM) device that can generate unequally spaced multiple wavelengths. Unequally spaced multiple QPM peaks can be obtained by employing the optimized phase modulation of a periodic domain structure. We fabricated a LiNbO3 waveguide device for 3.2-3.4 microm band difference frequency generation based on the design. Using the multiple mid-infrared outputs, we demonstrate the detection of multiple hydrocarbon gases, namely, methane, ethylene, and ethane.  相似文献   
133.
We introduce a U(1) lattice gauge theory with dual gauge fields and study its phase structure. This system is partly motivated by unconventional superconductors like extended s-wave and d  -wave superconductors in the strongly-correlated electron systems and also studies of the t–JtJ model in the slave-particle representation. In this theory, the “Cooper-pair” (or RVB spinon-pair) field is put on links of a cubic lattice due to strong on-site repulsion between original electrons in contrast to the ordinary s  -wave pair field on sites. This pair field behaves as a gauge field dual to the U(1) gauge field coupled with the hopping of electrons or quasi-particles of the t–JtJ model, holons and spinons. By Monte Carlo simulations we study this lattice gauge model and find a first-order phase transition from the normal state to the Higgs (superconducting) phase. Each gauge field works as a Higgs field for the other gauge field. This mechanism requires no scalar fields in contrast to the ordinary Higgs mechanism. An explicit microscopic model is introduced, the low-energy effective theory of which is viewed as a special case of the present model.  相似文献   
134.
The hairpin structure is one of the most common secondary structures in RNA and holds a central position in the stream of RNA folding from a non‐structured RNA to structurally complex and functional ribonucleoproteins. Since the RNA secondary structure is strongly correlated to the function and can be modulated by the binding of small molecules, we have investigated the modulation of RNA folding by a ligand‐assisted formation of loop–loop complexes of two RNA hairpin loops. With a ligand (NCT6), designed based on the ligand binding to the G–G mismatches in double‐stranded DNA, we successfully demonstrated the formation of both inter‐ and intra‐molecular NCT6‐assisted complex of two RNA hairpin loops. NCT6 selectively bound to the two hairpin loops containing (CGG)3 in the loop region. Native polyacrylamide gel electrophoresis analysis of two doubly‐labeled RNA hairpin loops clearly showed the formation of intermolecular NCT6‐assisted loop–loop complex. Förster resonance energy‐transfer studies of RNA constructs containing two hairpin loops, in which each hairpin was labeled with Alexa488 and Cy3 fluorophores, showed the conformational change of the RNA constructs upon binding of NCT6. These experimental data showed that NCT6 simultaneously bound to two hairpin RNAs at the loop region, and can induce the conformational change of the RNA molecule. These data strongly support that NCT6 functions as molecular glue for two hairpin RNAs.  相似文献   
135.
A novel method for the fabrication of a charge‐transfer complex crystal was developed. Photoirradiation of a solution of TPP[Co(tbp)(CN)2] and TPP[Co(Pc)(CN)2] (tbp=tetrabenzoporphyrin, Pc=phthalocyanine, TPP=tetraphenylphosphonium) gave a molecular conducting crystal of a charge‐transfer complex TPP[Co(tbp)(CN)2]2, which was produced by the process in which the photoexcited electron in tbp was transferred from the LUMO of tbp to that of Pc.  相似文献   
136.
A series of [{(terpy)(bpy)Ru}(μ‐O){Ru(bpy)(terpy)}]n+ ( [RuORu]n+ , terpy=2,2′;6′,2′′‐terpyridine, bpy=2,2′‐bipyridine) was systematically synthesized and characterized in three distinct redox states (n=3, 4, and 5 for RuII,III2 , RuIII,III2 , and RuIII,IV2 , respectively). The crystal structures of [RuORu]n+ (n=3, 4, 5) in all three redox states were successfully determined. X‐ray crystallography showed that the Ru? O distances and the Ru‐O‐Ru angles are mainly regulated by the oxidation states of the ruthenium centers. X‐ray crystallography and ESR spectra clearly revealed the detailed electronic structures of two mixed‐valence complexes, [RuIIIORuIV]5+ and [RuIIORuIII]3+ , in which each unpaired electron is completely delocalized across the oxo‐bridged dinuclear core. These findings allow us to understand the systematic changes in structure and electronic state that accompany the changes in the redox state.  相似文献   
137.
The CyanoP protein is a cyanobacterial homolog of the PsbP protein, which is an extrinsic subunit of photosystem II (PSII) in green plant species. The molecular function of CyanoP has been investigated in mutant strains of Synechocystis but inconsistent results have been reported by different laboratories. In this study, we generated and characterized a Synechocystis mutant in which entire region of the CyanoP gene was eliminated. After repeated subculture in CaCl2-depleted medium, growth retardation was clearly observed for a CyanoP knockout mutant of Synechocystis sp. PCC 6803 (?P). The PSII-mediated oxygen-evolving activity of the ?P cells was more susceptible to depletion of CaCl2 than that of wild-type cells. The 77 K fluorescence emission spectra indicated that energy coupling between phycobilisome and PSII was perturbed in both wild-type and ?P cells under CaCl2-depleted conditions, and was more evident for the ?P mutant. To examine the association of CyanoP with PSII complexes, we tested several detergents for solubilization of thylakoid membranes and showed that CyanoP was partly included in fractions containing large protein complexes in gel-filtration analysis. These results indicate that CyanoP constitutively stabilizes PSII functionality in vivo.  相似文献   
138.
A series of assembled PtII complexes comprising N-heterocyclic carbene and cyanide ligands was constructed using different substituent groups, [Pt(CN)2(R-impy)] (R-impyH+=1-alkyl-3-(2-pyridyl)-1H-imidazolium, R=Me ( Pt-Me ), Et ( Pt-Et ), iPr ( Pt- i Pr ), and tBu ( Pt- t Bu )). All the complexes exhibited highly efficient photoluminescence with an emission quantum yield of 0.51–0.81 in the solid state at room temperature, originating from the triplet metal-metal-to-ligand charge transfer (3MMLCT) state. Their emission colors cover the entire visible region from red for Pt-Me to blue for Pt- t Bu . Importantly, Pt- t Bu is the first example that exhibits blue 3MMLCT emission. The 3MMLCT emission was proved and characterized based on the temperature dependences of the crystal structures and emission properties. The wide-range color tuning of luminescence using the 3MMLCT emission presents a new strategy of superfine control of the emission color.  相似文献   
139.
The silaboration of [1.1.1]propellane enables direct introduction of B and Si functional groups onto the bicyclo[1.1.1]pentane (BCP) scaffold in high yield under mild, additive‐free conditions. The silaborated BCP can be obtained on a gram‐scale in a single step without the need for column‐chromatographic purification, and is storable and easy to handle, providing a versatile synthetic intermediate for BCP derivatives. We also describe various conversions of the C?B/C?Si bonds on the BCP scaffold, including development of a modified Suzuki–Miyaura cross‐coupling reaction at the highly sterically hindered bridgehead sp3 carbon center of the BCP skeleton using a combination of highly activated BCP boronic esters, copper(I) oxide, and a PdCl2(dppf) catalyst system.  相似文献   
140.
Rational engineering and assimilation of diverse chemo‐ and biocatalytic functionalities in a single nanostructure is highly desired for efficient multistep chemical reactions but has so far remained elusive. Here, we design and synthesize multimodal catalytic nanoreactors (MCNRs) based on a mesoporous metal‐organic framework (MOF). The MCNRs consist of customizable metal nanocrystals and stably anchored enzymes in the mesopores, as well as coordinatively unsaturated cationic metal MOF nodes, all within a single nanoreactor space. The highly intimate and diverse catalytic mesoporous microenvironments and facile accessibility to the active site in the MCNR enables the cooperative and synergistic participation from different chemo‐ and biocatalytic components. This was shown by one‐pot multistep cascade reactions involving a heterogeneous catalytic nitroaldol reaction followed by a [Pd/lipase]‐catalyzed chemoenzymatic dynamic kinetic resolution to yield optically pure (>99 % ee) nitroalcohol derivatives in quantitative yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号