首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2876篇
  免费   123篇
  国内免费   8篇
化学   2373篇
晶体学   26篇
力学   23篇
数学   165篇
物理学   420篇
  2023年   26篇
  2022年   25篇
  2021年   39篇
  2020年   69篇
  2019年   56篇
  2018年   20篇
  2017年   16篇
  2016年   65篇
  2015年   64篇
  2014年   81篇
  2013年   146篇
  2012年   180篇
  2011年   195篇
  2010年   105篇
  2009年   89篇
  2008年   207篇
  2007年   189篇
  2006年   196篇
  2005年   189篇
  2004年   183篇
  2003年   138篇
  2002年   141篇
  2001年   41篇
  2000年   45篇
  1999年   48篇
  1998年   37篇
  1997年   40篇
  1996年   24篇
  1995年   23篇
  1994年   19篇
  1993年   16篇
  1992年   18篇
  1991年   16篇
  1990年   8篇
  1989年   17篇
  1988年   12篇
  1987年   12篇
  1985年   27篇
  1984年   23篇
  1983年   12篇
  1982年   21篇
  1981年   22篇
  1980年   17篇
  1979年   14篇
  1978年   7篇
  1977年   12篇
  1976年   11篇
  1974年   8篇
  1973年   8篇
  1972年   7篇
排序方式: 共有3007条查询结果,搜索用时 0 毫秒
101.
102.
Annealing polyethylene terephthalate (PET)/polycarbonate (PC) blends enhance the transesterification reaction and increase the amount of copolymer at the interface of both polymers. The copolymer enhances the compatibility of PET with PC, because it contains both PET and PC blocks, which causes the interface between PET and PC to become fuzzy. When the PET/PC undergoes batch physical foaming with CO2, the copolymer significantly changes the resulting cell morphology, that is, the annealing time. Before annealing or in the absence of the copolymer, bubble nucleation occurs and dominates growth at the interface. When the PET/PC blends are annealed, the interface impedes bubble nucleation and growth. The polymer is stretched at the interface by bubble growth, forming fibril‐like structures connecting two polymer domains at the interface. Increased annealing time causes the interface to become more homogeneous and makes heterogeneous bubble nucleation difficult. At higher copolymer concentrations, the interface of PET and PC becomes fuzzy and the cell morphology becomes like those of foamed homogeneous polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
103.
104.
105.
106.
107.
Five kinds of ammonium groups functionalized partially fluorinated poly(arylene ether) block copolymer membranes were prepared for investigating the structure–property relationship as anion exchange membranes (AEMs). Consequently, the pyridine (PYR)‐modified membrane showed the highest alkaline and hydrazine stability in terms of the conductivity, water uptake, and dry weight. The chloromethylated precursor block copolymers were reacted with amines, such as trimethylamine, N‐butyldimethylamine, 1‐methylimidazole, 1,2‐dimethylimidazole, and PYR to provide the target quaternized poly(arylene ether)s. The structures of the polymers, as well as model compounds and oligomers were well characterized by 1H NMR spectra. The obtained AEMs were subjected to water uptake and hydroxide ion conductivity measurements and stabilities in aqueous alkaline and hydrazine media. The pyridinium‐functionalized quaternized polymers membrane showed the highest alkaline and hydrazine stability with minor losses in the conductivity, water uptake, and dry weight. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 383–389  相似文献   
108.
109.
Dibromopyridines or dibromopyridone with -(CH2)m-SO3Na group(s) has been prepared via the reactions of the corresponding dibromopyridines with -OH and -NH2 groups with sultone. These compounds were converted into polymers with the -(CH2)m-SO3H groups via organometallic polycondensation. The polymer showed proton conducting properties and high stability toward oxidation.  相似文献   
110.
Electron transfer reactions of Co(NH3)5PAA (PAA = polyacrylic acid) with either the polyanionic polymer-bound ferrous chelate, Fe11P-SS (P-SS = vinylbenzylaminediacetate-co-styrenesulfonate) or the uncharged polymer-bound ferrous chelate, Fe11P-VPRo (P-VPRo = vinylbenzylaminediacetate-co-vinylpyrrolidone), and the Ru(bpy)2+ 3 photosensitized reduction of Co(NH3)5PAA have been investigated in aqueous solutions at pH 5.4, I = 0.06 (I is ionic strength), and 25°C. For the ferrous chelate reductions, the second-order rate constants for Fe11-PSS and Fe11P-VPRo were almost equal to that for the corresponding nonpolymer-bound ferrous chelate, Fe11BDA (BDA = benzylaminediacetate). The results indicate that there is no appreciable steric hindrance due to the polymer chains of the polymer-bound ferrous chelates and that the effect of columbic repulsion force between the polyanion chains can be ignored for the reaction of Co(NH3)5PAA with Fe11P-SS. The results also suggest that there are two kinds of the pendant Co(III) species, “reactive” and “inert.” The inert Co(III) species are shielded by the polymer chains from attack of the Fe(II) chelates that are present in the bulk solutions. A similar reaction behavior was observed in the Ru(bpy)2+ 3 photosensitized reduction of Co(NH3)5PAA at pH 5.4. For the Co(III) complex having an extremely few Co(III) complex moieties on the polymer chain, almost all of the Co(III) groups were hardly reduced by the excited state of Ru(bpy)2+ 3, and reverse quenching occurred due to binding of the Ru(bpy)2+ 3 to the polyacrylic acid chain of the polymer complex. On the other hand, for Co(NH3)5PAA with a relatively large number of the Co(III) moieties on the polymer chain, lifetime measurements at a higher concentration of the Ru(bpy)2+ 3 showed a double-exponential fit, which suggests that there are two parallel decay processes. The fast and slow components mainly correspond to the decays: Ru(bpy)2+ 3 quenched by Co(III) and reverse quenching due to binding of Ru(bpy)2+ 3 into the compact polymer chains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号