首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1233篇
  免费   33篇
  国内免费   7篇
化学   1090篇
晶体学   10篇
力学   6篇
综合类   1篇
数学   44篇
物理学   122篇
  2022年   6篇
  2021年   6篇
  2020年   9篇
  2019年   10篇
  2018年   10篇
  2017年   14篇
  2016年   23篇
  2015年   17篇
  2014年   27篇
  2013年   55篇
  2012年   69篇
  2011年   78篇
  2010年   47篇
  2009年   38篇
  2008年   91篇
  2007年   91篇
  2006年   81篇
  2005年   81篇
  2004年   90篇
  2003年   56篇
  2002年   62篇
  2001年   16篇
  2000年   7篇
  1999年   18篇
  1998年   9篇
  1997年   19篇
  1996年   8篇
  1995年   13篇
  1994年   10篇
  1993年   20篇
  1992年   8篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   11篇
  1987年   8篇
  1986年   9篇
  1985年   14篇
  1984年   9篇
  1983年   8篇
  1982年   9篇
  1981年   23篇
  1980年   8篇
  1979年   10篇
  1978年   8篇
  1977年   9篇
  1976年   12篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1273条查询结果,搜索用时 0 毫秒
41.
Reactions of 1,2‐dihydro‐4H‐3,1‐benzothiazine‐2,4‐dithiones (trithioisatoic anhydrides) 3 with N‐substi‐tuted benzylamines 9 gave 1,2‐dihydroquinazoline‐4‐thiones 10 , o‐thioureidodithiobenzoic acid 11 , o‐aminothiobenzamides 12 , 2‐amino‐3,1‐benzothiazine‐4‐thiones 13 , or quinazoline‐2,4‐dithiones 14 , depending on the kinds of amine and the reaction solvent. On the other hand, reaction of 3 with trialkyl phosphites afforded dialkyl (1,2‐dihydro‐2‐thioxo‐4H‐3,1‐benzothiazin‐4‐yl)phosphonates 18 .  相似文献   
42.
Synthesis of pyrido[1′,2′:1,2]imidazo[4,5-b]quinoxalines by the facile cyclizations of 2,3-dichloroquinoxalines with 2-aminopyridines and of 2-amino-3-chloroquinoxalines with various substituted pyridines is described.  相似文献   
43.
Synthesis and binding affinity of rationally designed artificial ditopic nucleobase receptors are reported. The ditopic receptors were designed to recognize thymine-thymine dinucleotides by their two hydrogen-bonding moieties, which are connected to conformationally well-defined linkages such as ferrocene and biphenylene. The ditopic receptors exhibited a remarkably strong binding affinity for lipophilic TpT analogue in CDCl(3)/DMSO-d(6) (85:15, v/v). The binding affinity of the ditopic receptors for the dinucleotide was so high that even native TpT was extracted by them into CDCl(3). Detailed comparisons for the recognition abilities of the ditopic receptors were also conducted.  相似文献   
44.
Five megastigmane glucosides were isolated from the leaves of Glochidion zeylanicum. One of them was a known compound, blumenol C O-beta-D-glucopyranoside (1), and the structures of the four new compounds, glochidionionosides A-D (2-5), were mainly elucidated by spectroscopic methods, including a modified Mosher's method. The absolute configurations of the six-membered ring of glochidionionoside D (5) were deduced by beta-D-glucopyranosylation-induced shift trends in the (13)C-NMR spectra and confirmed by X-ray analysis as its p-bromobenzoate (5b), and the axis chirality of C-7 was determined to be R.  相似文献   
45.
Using the form of supported liquid-phase catalysts, two or more homogeneous catalysts can simultaneously be used with retaining their own activities and taking the advantage of catalyst-product separation and catalyst recycling.  相似文献   
46.
Inamo M  Eba K  Nakano K  Itoh N  Hoshino M 《Inorganic chemistry》2003,42(19):6095-6105
A nanosecond laser photolysis study was carried out for the Cr(III) porphyrin complexes of 2,3,7,8,12,13,17,18-octaethylporphyrin, [Cr(OEP)(Cl)(L)], and of 5,10,15,20-tetramesitylporphyrin, [Cr(TMP)(Cl)(L)], in toluene containing water and an excess amount of L (L = axial ligand). The laser photolysis generates the triplet excited state of the parent complex as well as a five-coordinate complex, [Cr(porphyrin)(Cl)], produced by the photodissociation of the axial ligand L. The yields for the formation of the triplet state and the photodissociation of L are found to markedly depend on the nature of both L and porphyrin ligand. The five-coordinate [Cr(porphyrin)(Cl)] readily reacts with both H(2)O and L in the bulk solution to give [Cr(porphyrin)(Cl)(H(2)O)] and [Cr(porphyrin)(Cl)(L)], respectively. The axial H(2)O ligand in [Cr(porphyrin)(Cl)(H(2)O)] is then substituted by the ligand L to regenerate the original complex [Cr(porphyrin)(Cl)(L)]. In principle, the substitution reaction takes place by the dissociative mechanism: the first step is the dissociation of H(2)O from [Cr(porphyrin)(Cl)(H(2)O)], followed by the reaction of the five-coordinate [Cr(porphyrin)(Cl)] with the ligand L to regenerate [Cr(porphyrin)(Cl)(L)]. The rate constants for this ligand substitution reaction are found to exhibit bell-shaped ligand concentration dependence. The detailed kinetic analysis revealed that both ligands L and H(2)O in toluene make a hydrogen bond with the axial H(2)O ligand in [Cr(porphyrin)(Cl)(H(2)O)] to yield dead-end complexes for the substitution reaction. The reaction mechanisms are discussed on the basis of the substituent effects of the porphyrin peripheral groups and the kinetic parameters determined from the temperature dependence of the rate constants.  相似文献   
47.
When ternary mixed solvents consisting of water-hydrophilic/hydrophobic organic solvents are fed into a micro-space under laminar flow conditions, the solvent molecules are radially distributed in the micro-space. The specific fluidic behavior of the solvents is called the "tube radial distribution phenomenon (TRDP)". A novel capillary chromatography method was developed based on the TRDP that creates the inner major and outer minor phases in a tube, where the outer phase acts as a pseudo-stationary phase. This is called "tube radial distribution chromatography (TRDC)". In this study, Chrome Azurol S as an absorption reagent was introduced into the TRDC system for metal ion separation and online detection. The fused-silica capillary tube (75 μm id and 110 cm length) and water-acetonitrile-ethyl acetate mixture (3:8:4 volume ratio) including 20 mM Chrome Azurol S as a carrier solution were used. Metal ions, i.e. Co(II), Cu(II), Ni(II), Al(III), and Fe(III), as models were injected into the present TRDC system. Characteristic individual absorption characteristics and elution times were obtained as the result of complex formation between the metal ions and Chrome Azurol S in the water-acetonitrile-ethyl acetate mixture solution. The elution times of the metal ions were examined based on their absorption behavior; Co(II), Ni(II), Al(III), Fe(III), and Cu(II) were eluted in this order over the elution times of 4.7-6.8 min. The elution orders were determined from the molar ratios of metal ion to Chrome Azurol S and Irving-Williams series for bivalent metal ions.  相似文献   
48.
Terthiophene-appended gold nanoparticles were prepared by the reduction of AuCl4(C8H17)4N+ with NaBH4 in the presence of bis[2,5-di(3-hexylthiophen-2-yl)thiophene-3-carboxyloxyhexanyl]disulfide. A hexagonal self-assembly of particles with gold core diameters (1.9±0.1 nm) was detected by high-angle annular dark-field scanning transmission electron microscopy. The electric conductivity of the iodine-doped film was 9.1×10−6 S cm−1, which was ascribable to the terthiophene-based inter-ligand π-π interactions. The Au/terthiophene hybrid spin-coated film consisted of a highly three-dimensional assembled structure of terthiophenes, as inferred from grazing-incidence small-angle X-ray scattering, indicating that such monodispersed and small-sized gold nanoparticles can serve as a template for this organization. In this study, a gold nanoparticle-templated assembly of oligothiophenes has been fabricated for proposing a method to develop tailor-made organizations of π-conjugated oligomers.  相似文献   
49.
The reactions of the dinuclear platinum(II) complexes, [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-pz)](NO(3))(2) (1, pz = pyrazolate), [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-1,2,3-ta-N1,N2)](NO(3))(2) (2, 1,2,3-ta = 1,2,3-triazolate), and a newly prepared [[cis-Pt(NH(3))(2)](2)(mu-OH)(mu-4-phe-1,2,3-ta-N1,N2)](NO(3))(2) (3, 4-phe-1,2,3-ta = 4-phenyl-1,2,3-triazolate), whose crystal structure was determined, with 9-ethylguanine (9EtG) have been monitored in aqueous solution at 310 K by means of (1)H NMR spectroscopy. The dinuclear platinum(II) complexes 1-3 each react with 9EtG in a bifunctional way to form 1:2 complexes, [[cis-Pt(NH(3))(2)(9EtG-N7)](2)(mu-pz)](3+) (4), [[cis-Pt(NH(3))(2)(9EtG-N7)](2)(mu-1,2,3-ta-N1,N3)](3+) (5), and [[cis-Pt(NH(3))(2)(9EtG-N7)](2)(mu-4-phe-1,2,3-ta-N1,N3)](3+) (6). The reactions of 2 and 3 involve a novel isomerization, in which the Pt atom, initially bound to N2 on the 1,2,3-ta, migrates to N3 after the first substitution by N7 of 9EtG. This isomerization reaction has been unambiguously characterized by 1D and 2D NMR spectroscopy and pH titration. The reactions of 2 and 3 with 9EtG show faster kinetics, and the second-order rate constants (k) for the reactions of 1-3are 1.57 x 10(-4), 2.53 x 10(-4), and 2.56 x 10(-4) M(-1) s(-1), respectively. The pK(a) values at the N1H site of 9EtG were determined for 4-6 from the pH titration curves. Cytotoxicity assays of 1-3 were performed in L1210 murine leukemia cell lines, respectively sensitive and resistant to cisplatin. In the parent cell line, 2 and 3 exhibit higher cytotoxicity compared to cisplatin, especially, 2 is 10 times as active as cisplatin. 1 was found to be less cytotoxic than cisplatin, but still in the active range and more active than cisplatin in a cisplatin-resistant cell line.  相似文献   
50.
(+)-Biotin (1) was synthesized in 25% overall yield over 11 steps from L-cysteine. The contiguous asymmetric centers at C-3a and C-6a were formed through a novel and highly stereoselective Lewis base-catalyzed cyanosilylation of alpha-amino aldehyde 3 to provide anti-O-TMS-cyanohydrin 4 with high stereoselectivity and in high yield (anti/syn = 92:8, 96%). Treatment of 4 with a di-Grignard reagent, 1,4-bis(bromomagnesio)butane, followed by carbon dioxide, efficiently installed the 4-carboxybutyl chain at C-4 to give keto acid 5. The final cyclization to bicyclic compound 7b, a precursor to 1, was realized by a palladium-catalyzed intramolecular allylic amination of cis-allylic carbonate 6b that was elaborated from 5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号