Nanoplates of the three-dimensional coordination polymer, {[Cd(3)(3-pyc)(4)(N(3))(2)(H(2)O)](n) (1), 3-pyc(-)=pyridine-3-carboxylate), have been synthesized by a sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. Cadmium(II) oxide nanoparticles were prepared from thermal decomposition in oleic acid and direct calcination of compound 1 at different temperatures. The thermal stability of nano-sized compound 1 was studied by thermal gravimetric (TG) and differential thermal analyses (DTA). Results show that the size and morphology of the CdO nanoparticles are dependent upon the particles size of compound 1 and the thermolysis temperature. A decrease in the particle size of compound 1 leads to a decrease in the particle size of the CdO, while an increase in the processing temperature leads to an increase in the particle size of the produced cadmium(II) oxide nano-particles. 相似文献
Magnetic nanofluids, ferrofluids, are a special category of smart nanomaterials, consisting of stable dispersion of magnetic nanoparticles in different fluids. In this study, magnetic nanoparticles of hematite, α-Fe2O3, were prepared by solvothermal method using Fe(NO3)3 as a starting material. The nanoparticles were characterized by X-ray diffraction (XRD) and transmission electronic microscope (TEM).To the best of our knowledge, this is the first research on the rheological properties of nanofluids of α-Fe2O3 nanoparticles and glycerol. The experimental results showed that the viscosity of α-Fe2O3-glycerol nanofluids increases with increasing the particle volume fraction and decreases with increasing temperature. Our results clearly showed that the α-Fe2O3-glycerol nanofluids are non-Newtonian shear-thinning and their shear viscosity depends strongly on temperature. The experimental data were compared with some theoretical models. The measured values of the effective viscosity of nanofluids are underestimated by the theoretical models. 相似文献
Molecular Diversity - Soluble epoxide hydrolase (sEH) enzyme plays an important role in the metabolism of endogenous chemical mediators, epoxyeicosatrienoic acids, which are involved in the... 相似文献
Research on anticancer properties of natural compounds, as effective materials that are available while causing minimal side effects, is growing. Ellagic acid (EA) is a well-known polyphenolic compound, which has been found in both free and complex modes in several medicinal plants such as pomegranate, walnut, and berries. Although many articles have reported anticancer properties for this compound, its mechanism of action has not been fully elucidated. In this study, we used several online and offline bioinformatics tools and databases to identify the mechanism of action of EA on various types of human malignancies including bladder, blood, breast, cervical, colorectal, liver, pancreas, and prostate cancers. In this context, after identifying and extracting EA-affected human genes/proteins that have been reported in various references, we built the related gene networks and determined functional hub genes. In addition, docking was performed to recognize target proteins that react directly with EA and are in fact most affected by this compound. Our findings revealed that EA exerts its anticancer effects by influencing specific hub genes in various types of cancers. Moreover, different cellular signaling pathways are affected by this natural compound. Generally, it turned out that EA probably exerts most of its anticancer activities, through induction of apoptosis, as well as P53 and WNT signaling pathways, and also by affecting the expression of several hub genes such as CDKN1A, CDK4, CDK2, CDK6, TP53, JUN, CCNA2, MAPK14, CDK1, and CCNB1 and especially interactions with some related proteins including P53, CDK6, and MAPK14.
Summary The reaction between alkyl isocyanides and isopropylidene Meldrum’s acid in the presence of 1,2-ethanediol leads to N1-(alkyl)-2-(5,7-dioxo-1,4-dioxepane-6-yl)-2-methylpropanamides. 1,3-Propanediol or 1,4-butanediol produce hydroxyalkyl 1-(tert-butyl)-4,4-dimethyl-2,5-dioxo-3-pyrrolidinecarboxylates. When the reaction was performed in the presence of catechol, bis(2-hydroxyphenyl)
2-[2-(tert-butylamino)-1,1-dimethyl-2-oxoethyl]malonate was obtained. 2-Aminophenols react with alkyl isocyanides in the presence of
isopropylidene Meldrum’s acid to produce 1-alkyl-N3-(2-hydroxyaryl)-4,4-dimethyl-2,5-dioxo-3-pyrrolidinecarboxamides in good yields. 相似文献