首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   26篇
  国内免费   7篇
化学   663篇
晶体学   7篇
力学   39篇
数学   168篇
物理学   130篇
  2024年   3篇
  2023年   16篇
  2022年   46篇
  2021年   54篇
  2020年   48篇
  2019年   44篇
  2018年   31篇
  2017年   27篇
  2016年   56篇
  2015年   27篇
  2014年   41篇
  2013年   79篇
  2012年   55篇
  2011年   62篇
  2010年   33篇
  2009年   37篇
  2008年   33篇
  2007年   26篇
  2006年   41篇
  2005年   35篇
  2004年   21篇
  2003年   27篇
  2002年   9篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   10篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1981年   8篇
  1980年   5篇
  1979年   12篇
  1978年   4篇
  1977年   2篇
  1971年   2篇
  1965年   1篇
排序方式: 共有1007条查询结果,搜索用时 15 毫秒
31.
32.
This paper presents an extension of the application of the concept of entropy to annuity costs. Keyfitz (1985) introduced the concept of entropy, and analysed this in the context of continuous changes in life expectancy. He showed that a higher level of entropy indicates that the life expectancy has a greater propensity to respond to a change in the force of mortality than a lower level of entropy. In other words, a high level of entropy means that further reductions in mortality rates would have an impact on measures like life expectancy. In this paper, we apply this to the cost of annuities and show how it allows the sensitivity of the cost of a life annuity contract to changes in longevity to be summarized in a single figure index.  相似文献   
33.
34.
In this study, the effect of different numbers of baffles is investigated using computational simulation. Laboratory measurements using different numbers of constant height baffles in a rectangular primary sedimentation tank are conducted. The velocity fields measured by an Acoustic Doppler Velocimeter (ADV) are used to verify the results of the computational model. The effects of the number of baffles arrangement on the hydraulic performance of primary settling tanks are studied by using two different ways: the parameters of flow pattern and the Flow Through Curves (FTCs) method. The results of both the experimental and computational investigations indicate that increasing the number of baffles in suitable positions provides minimum volume of the recirculation region, dissipates the kinetic energy, creates a uniform flow field in the tank and finally the hydraulic efficiency of the sedimentation tank will be improved.  相似文献   
35.
Transparent conducting ZnO and Al doped ZnO thin films were deposited on glass substrate by ultrasonic spray method. The thin films with concentration of 0.1 M were deposited at 350 °C with 2 min of deposition time. The effects of ethanol and methanol solution before and after doping on the structural, optical and electrical properties were examined. The DRX analyses indicated that ZnO films have nanocrystalline nature and hexagonal wurtzite structure with (1 0 0) and (0 0 2) preferential orientation corresponding to ZnO films resulting from methanol and ethanol solution, respectively. The crystallinity of the thin films improved with methanol solution after doping to (0 0 2) oriented. All films exhibit an average optical transparency about 90%, in the visible range. The band gaps values of ZnO thin films are increased after doping from 3.10 to 3.26 eV and 3.27 to 3.30 eV upon Al doping obtained by ethanol and methanol solution, respectively. The electrical conductivity increase from 7.5 to 15.2 (Ω cm)−1 of undoped to Al doped ZnO thin films prepared by using ethanol solution. However, for the methanol solution; the electrical conductivity of the film is stabilized after doping.  相似文献   
36.
Transparent conducting undoped zinc oxide thin films were deposited on glass substrate by ultrasonic spray and spray pyrolysis techniques. The thin films were deposited at different substrate temperatures ranging between 300 and 450 °C with various precursor molarities. The correlation between the structural and optical properties suggests that the crystallites sizes of the films are predominantly influenced by the band gap energy of the thin films. The data of the correlation is suspected of involving some experimental measurement errors and therefore discarded in the development of the present correlation. The coefficient of correction is equal to 0.01, indicating high quality representation of data based on Eq. (1). The correlation also indicates that the crystallites sizes of the films are predominantly influenced by the band gap energy and the precursor molarity of the thin films. The model proposed of undoped ZnO thin film with substrate temperature was investigated.  相似文献   
37.
Pure and Cobalt doped zinc oxide were deposited on glass substrate by Ultrasonic spray method. Zinc acetate dehydrate, Cobalt chloride, 4-methoxyethanol and monoethanolamine were used as a starting materials, dopant source, solvent and stabilizer, respectively. The ZnO samples and ZnO:Co with Cobalt concentration of 2 wt.% were deposited at 300, 350 and 400 °C. The effects of substrate temperature and presence of Co as doping element on the structural, electrical and optical properties were examined. Both pure and Co doped ZnO samples are (0 0 2) preferentially oriented. The X-ray diffraction results indicate that the samples have polycrystalline nature and hexagonal wurtzite structure with the maximum average crystallite size of ZnO and ZnO:Co were 33.28 and 55.46 nm. An increase in the substrate temperature and presence doping the crystallinity of the thin films increased. The optical transmittance spectra showed transmittance higher than 80% within the visible wavelength region. The band gap energy of the thin films increased after doping from 3.25 to 3.36 eV at 350 °C.  相似文献   
38.
This paper deals with constrained regulation of continuous Petri nets under the so-called infinite servers semantics. Our aim is to design feedback gains that permit us to reach both desired stationary marking vector and desired asymptotic firing rate vector. The proposed approach takes into account constraints on the control, the marking of the Petri net, and the stability of the closed-loop system. The existence of a solution is first expressed geometrically, in terms of the inclusion of two polyhedral sets. They are reformulated algebraically as linear matrix inequalities, which provides an effective way to calculate feedback gains answering the problem. Finally, an application to an assembly production system is given.  相似文献   
39.
In this paper, a novel lanthanum metal–organic framework La‐MOF was prepared via hydrothermal and reflux methods. The La‐MOF was achieved through the reaction of a 5‐amino‐isophthalic acid with 1, 2‐phenylenediamine and lanthanum chloride. The prepared La‐MOF structure was confirmed by XRD, mass spectrometry, IR, UV–Vis and elemental analysis, whereas the size, and morphology was examined by FE‐SEM/EDX and HR‐TEM. The results indicated that the La‐MOF prepared via both methods have the same structure and composition. Meanwhile, the MOF yield, reaction time, morphology, physiochemical and sensing properties were highly depended on the used preparation method. The photoluminescence (PL) study was carried out for the La‐MOF, and the results showed that La‐MOF exhibits strong emission at 558 nm after excitation at 369 nm. Moreover, the PL data indicating that the La‐MOF has highly selective sensing properties for iron (III) competing with different metal ions. The Stern‐Völmer graph shows a linear calibration curve which achieved over a concentration range 1.0–500 μM of Fe3+ with a correlation coefficient, detection, and quantitation limits 0.998, 1.35 μM and 4.08 μM, respectively. According to the remarkable quenching of the PL intensity of La‐MOF using various concentrations of Fe3+, it was successfully used as a sensor for Fe3+detecting in different water resources (pure and waste) samples. The quenching mechanism was studied and it has a dynamic type and due to efficient energy transfer between the La‐MOF and Fe3+.  相似文献   
40.
Heavy metal ions are harmful to aquatic life and humans owing to their high toxicity and non‐biodegradability, so their removal from wastewater is an important task. Therefore, this work focuses on designing suitable, simple and economical nanosensors to detect and remove these metal ions with high selectivity and sensitivity. Based on this idea, different types of mesoporous materials such as hexagonal SBA‐15, cubic SBA‐16 and spherical MCM‐41, their chloro‐functionalized derivatives, as well as 4‐(4‐nitro‐phenylazo)‐naphthalen‐1‐ol (NPAN) azo dye have been synthesized, with the aim of designing some optical nanosensors for metal ions sensing applications. The mentioned azo dye has been anchored into the chloro‐functionalized mesoporous materials. The designed nanosensors were characterized using scanning and transmission electron microscopy as well as Fourier transform infrared and UV–visible spectral analysis, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analyses. Their optical sensing to various toxic metal ions such as Cd (II), Hg (II), Mn (II), Fe (II), Zn (II) and Pb (II) at different values of pH (1.1, 4.9, 7 and 12) was investigated. The optimization of experimental conditions, including the effect of pH and metal ion concentration, was examined. The experimental results showed that the solution pH had a major impact on metal ion detection. The optical nanosensors respond well to the tested metal ions, as reflected by the enhancement in both absorption and emission spectra upon adding different concentrations of the metal salts and were fully reversible on adding ethylene diamine tetra acetic acid or citric acid to the formed complexes. High values of the binding constants for the designed nanosensors were observed at pHs 7 and 12, confirming the strong chelation of different metals to the nanosensor at these pHs. Also, high binding constants and sensitivity were observed for NPAN‐MCM‐41 as a nanosensor to detect the different metal ions. From the obtained results, we succeeded in transforming the harmful azo dye into an environmentally friendly form via designing of the optical nanosensors used to detect toxic metal ions in wastewater with high sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号