首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   675篇
  免费   12篇
  国内免费   1篇
化学   393篇
晶体学   5篇
力学   15篇
数学   145篇
物理学   130篇
  2023年   10篇
  2022年   6篇
  2021年   16篇
  2020年   20篇
  2019年   14篇
  2018年   5篇
  2016年   12篇
  2014年   5篇
  2013年   36篇
  2012年   26篇
  2011年   24篇
  2010年   12篇
  2009年   8篇
  2008年   27篇
  2007年   26篇
  2006年   21篇
  2005年   17篇
  2004年   21篇
  2003年   21篇
  2002年   17篇
  2001年   6篇
  1999年   10篇
  1998年   6篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1993年   5篇
  1992年   11篇
  1991年   6篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   9篇
  1985年   25篇
  1984年   19篇
  1983年   12篇
  1982年   11篇
  1981年   12篇
  1980年   13篇
  1979年   13篇
  1978年   13篇
  1977年   15篇
  1976年   15篇
  1975年   12篇
  1974年   18篇
  1973年   7篇
  1972年   12篇
  1971年   5篇
  1968年   6篇
  1967年   4篇
排序方式: 共有688条查询结果,搜索用时 218 毫秒
131.
Ji HF  Gao H  Buchapudi KR  Yang X  Xu X  Schulte MK 《The Analyst》2008,133(4):434-443
Microcantilevers (MCLs) hold a position as a cost-effective and highly sensitive sensor platform for medical diagnostics, environmental analysis and fast throughput analysis. MCLs are unique in that adsorption of analytes on the microcantilever (MCL) surface changes the surface characteristics of the MCL and results in bending of the MCL. Surface stress due to conformation change of proteins and other polymers has been a recent focus of MCL research. Since conformational changes in proteins can be produced through binding of anylates at specific receptor sites, MCLs that respond to conformational change induced surface stress are promising as transducers of chemical information and are ideal for developing microcantilever-based biosensors. The MCL can also potentially be used to investigate conformational change of proteins induced by non-binding events such as post-translational modification and changes in temperature or pH. This review will provide an overview of MCL biosensors based on conformational change of proteins bound to the MCL surface. The models include conformational change of proteins, proteins on membranes, enzymes, DNA and other polymers.  相似文献   
132.
In this paper it is shown that the projective cover of the trivial irreducible module of a finite-dimensional solvable restricted Lie algebra is induced from the one dimensional trivial module of a maximal torus. As a consequence, the number of the isomorphism classes of irreducible modules with a fixed p-character for a finite-dimensional solvable restricted Lie algebra L is bounded above by p MT(L), where MT(L) denotes the maximal dimension of a torus in L. Finally, it is proved that in characteristic p > 3 the projective cover of the trivial irreducible L-module is induced from the one-dimensional trivial module of a torus of maximal dimension, only if L is solvable.  相似文献   
133.
Inhibitors of NAALADase have shown promise for a variety of diseases associated with glutamate excitotoxicity, and could be useful for the diagnosis and therapy of prostate cancer. A series of novel enantiomerically pure 2-(phosphonomethyl)pentanedioic acid (2-PMPA) based NAALADase inhibitors were synthesized. These compounds were prepared from previously reported (S)-2-(hydroxyphosphinoylmethyl)pentanedioic acid benzyl ester . Biological test results showed that the new compounds are good to outstanding NAALADase inhibitors. Compounds and showed activity similar to the known potent inhibitor (S)-2-PMPA. Fluorescently labeled inhibitor may potentially be used to study binding to prostate cancer cells by fluorescence microscopy, and siderophore-containing inhibitor may be useful for detection of prostate-derived cancer cells by magnetic resonance imaging (MRI).  相似文献   
134.
Mechanisms for pyrolysis of poly(α-methylstyrene) must rationalize high selectivity for monomer formation, negligible formation of volatile oligomers, and notably slow decrease in molecular weight compared with the rate of weight loss, i.e., unzipping dominates both back-biting and transfer. Backbone homolysis should form both a tert-benzylic radical Rtb and a prim radical Rp, with formation of the latter potentially supplemented in chain propagation steps emanating from the former. Hence product-forming pathways characteristic of each are expected to compete. Simulations of initial product distributions based on assigned rate constants for chain propagation steps indicate that Rtb is indeed predicted to efficiently unzip with minimal transfer or back-biting. However, Rp is predicted to give comparable amounts of transfer and back-biting with minimal unzipping, behavior inconsistent with experimental data. The proposed escape from this impasse is a previously unrecognized pathway, 1,2-phenyl shift in Rp to form a tert radical. If it undergoes β-scission, the net result is an inter-conversion of Rp to Rtb. Quantitative simulations suggest that this sequence is indeed highly competitive with other reactions of Rp and thus efficiently subverts the otherwise expected propagation of chains emanating from Rp.  相似文献   
135.
The structure factor for hard hyperspheres in two to eight dimensions is computed by Fourier transforming the pair correlation function obtained by computer simulation at a variety of densities. The resulting structure factors are compared to the known Percus-Yevick equations for odd dimensions and to the model proposed by Leutheusser [J. Chem. Phys. 84, 1050 (1986)] and Rosenfeld [J. Chem. Phys. 87, 4865 (1987)] in even dimensions. It is found that there is fine agreement among all these approaches at low to moderate densities but that the accuracy of the analytical models breaks down as the freezing transition is approached. The structure factor gives another insight into the decrease in the ordering of the hyperspheres as the dimension is increased.  相似文献   
136.
The addition of azides to acylnitroso hetero-Diels-Alder cycloadducts derived from cyclopentadiene affords exo-triazolines in excellent yield. The reaction is greatly affected by the level of alkene strain, while sterically demanding azides do not hinder the reaction. Conversion of the triazolines to aziridines is also described.  相似文献   
137.
We describe a reaction system that enables the synthesis of Bcr–Abl tyrosine kinase inhibitors (TKI) via benzanilide formation in water. The reaction is based on native chemical ligation (NCL). In contrast to previous applications, we used the NCL chemistry to establish aromatic rather than aliphatic amide bonds in coupling reactions between benzoyl and o-mercaptoaniline fragments. The method was applied for the synthesis of thiolated ponatinib and GZD824 derivatives. Acid treatment provided benzothiazole structures, which opens opportunities for diversification. Thiolation affected the affinity for Abl1 kinase only moderately. Of note, a ponatinib-derived benzothiazole also showed nanomolar affinity. NCL-enabled benzanilide formation may prove useful for fragment-based drug discovery. To show that benzanilide synthesis can be put under the control of a template, we connected the benzoyl and o-mercaptoaniline fragments to DNA and peptide nucleic acid (PNA) oligomers. Complementary RNA templates enabled adjacent binding of reactive conjugates triggering a rapid benzoyl transfer from a thioester-linked DNA conjugate to an o-mercaptoaniline-DNA or -PNA conjugate. We evaluated the influence of linker length and unpaired spacer nucleotides within the RNA template on the product yield. The data suggest that nucleic acid-templated benzanilide formation could find application in the establishment of DNA-encoded combinatorial libraries (DEL).

The templated native chemical ligation between benzoyl thioesters and o-mercaptoaniline fragments proceeds in water and provides benzanilides that have nanomolar affinity for Abl1 kinase.  相似文献   
138.
{[2-(dimethylamino)ethyl]cyclopentadienyl}titanium trichloride (CpNTiCl3, 1 ) was activated with methylaluminoxane (MAO) to catalyze polymerizations of ethylene (E), propylene (P), ethylidene norbornene (ENB), vinylcyclohexene (VCH), and 1,4-hexadiene (HD). The dependence of homopolymerization activity ( A ) of 1 /MAO on olefin concentration ([M]n) is n = 2.0 ± 0.5 for E and n = 1.8 ± 0.2 for P. The value of n is 2.4 ± 0.2 for CpTiCl3/MAO catalysis of ethylene polymerization; this system does not polymerize propylene. 1 /MAO catalyzes HD polymerization at one-tenth of A H for 1-hexene, probably because of chelation effects in the HD case. The copolymerization of E and P has reactivity ratios of rE = 6.4 and rP = 0.29 at 20°C, and rErP = 1.9, which suggests 1 /MAO may be a multisite catalyst. The copolymerization activity of CpTiCl3/MAO is 50 times smaller than that of CpNTiCl3/MAO. Terpolymerization of E/P/ENB has A of 105 g of polymer/(mol of Ti h), incorporates up to 14 mol % (∼ 40 wt %) of ENB, and high MW's of 1 to 3 × 105. All of these parameters are surprisingly insensitive to the ENB concentration. The E/P/VCH terpolymerization has comparable A value of (1.3 ± 0.3) × 105 g/(mol of Ti h). The incorporation of VCH in terpolymer increases with increasing [VCH]. Terpolymerization with HD occurs at about one-third of the A of either ENB or VCH; the product HD–EPDM is low in molecular weight and contains less than 4% of HD. These terpolymerization results are compared with those obtained previously for three zirconocene precursors: rac-ethylenebis(1-η5-indenyl)dichlorozirconium ( 6 ), rac-(dimethylsilylene)bis(1-η5-indenyl)dichlorozirconium ( 7 ), and ethylenebis(9-η5-fluorenyl)dichlorozirconium ( 8 ). The last compound is a particularly poor terpolymerization catalyst; it incorporates very little VCH or HD and no ENB at all. 7 /MAO is a better catalyst for E/P/VCH terpolymerization, while 6 /MAO is superior in E/P/HD terpolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 319–328, 1998  相似文献   
139.
Although our microscopic view of solids is still evolving, for a large class of materials one can construct a useful first principles or “standard model” of solids which is sufficiently robust to explain and predict many physical properties. Both electronic and structural properties can be studied, and the results of the first-principles calculations can be used to predict new materials, formulate empirical theories and simple formulas to compute material parameters, and explain trends. A discussion of the microscopic approach, applications, and empirical theories is given here, and some recent results on nanotubes, hard materials, and fullerenes are presented. © 1997 John Wiley & Sons, Inc.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号