首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
化学   71篇
数学   2篇
物理学   10篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   14篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2000年   4篇
  1993年   1篇
  1992年   1篇
排序方式: 共有83条查询结果,搜索用时 453 毫秒
51.
Pomegranate seed oil (PSO) and bitter melon dried fruits (BME) are used as natural remedies in folk medicine and as dietary supplements. However, the exact mechanism of their beneficial action is not known. The aim of study was to assess how the diet supplementation with PSO and/or with an aqueous solution of Momordica charantia affects the metabolism of fatty acids, fatty acids composition and the level of prostaglandin E2 (PGE2) in rat liver. Animals (Sprague-Dawley female rats, n = 48) were divide into four equinumerous groups and fed as a control diet or experimental diets supplemented with PSO, BME or both PSO and BME for 21 weeks. Fatty acids were determined using gas chromatography with flame ionization detection. PSO added to the diet increased the rumenic acid content (p < 0.0001) and increased accumulation of n-6 fatty acids (p = 0.0001) in hepatic tissue. Enrichment of the diet either with PSO or with BME reduced the activity of Δ6-desaturase (D6D) (p = 0.0019), whereas the combination of those dietary factors only slightly increased the effect. Applied dietary supplements significantly reduced the PGE2 level (p = 0.0021). No significant intensification of the influence on the investigated parameters resulted from combined application of PSO and BME. PSO and BME have potential health-promoting properties because they influence fatty acids composition and exhibit an inhibiting effect on the activity of desaturases and thus they contribute to the reduction in the metabolites of arachidonic acid (especially PGE2).  相似文献   
52.
53.
Classical molecular dynamics simulations of aqueous N-methylacetamide (NMA) have been performed across a concentration range at 308 K. This peptidic fragment molecule is a useful model for investigating water/peptide hydrogen bond competition. The simulations predict considerable NMA self-association even at low concentrations with a concentration-dependent increase in the ratio of branched to linear clusters. Water-mediated NMA contacts are a feature of this regime, manifested by an unexpected increase in the number of short NMA oxygen contacts arising from water bridge motifs. In contrast, bulk water structure is significantly disrupted by the addition of even small quantities of NMA. With increases in NMA concentration water molecules become progressively more isolated, forming dimers and trimers hydrogen-bonded to NMA. The mixture in this concentration regime may therefore offer a minimal model system for certain structural properties of interior water buried in protein cavities and hydrogen-bonded to mainchain peptide groups.  相似文献   
54.
In this work, it is shown how different carrier recombination paths significantly broaden the photoluminescence (PL) emission bandwidth observed in type‐II self‐assembled SiGe/Si(001) quantum dots (QDs). QDs grown by molecular beam epitaxy with very homogeneous size distribution, onion‐shaped composition profile, and Si capping layer thicknesses varying from 0 to 1100 nm are utilized to assess the optical carrier‐recombination paths. By using high‐energy photons for PL excitation, electron‐hole pairs can be selectively generated either above or below the QD layer and, thus, clearly access two radiative carrier recombination channels. Fitting the charge carrier capture‐, loss‐ and recombination‐dynamics to PL time‐decay curves measured for different experimental configurations allows to obtain quantitative information of carrier capture‐, excitonic‐emission‐, and Auger‐recombination rates in this type‐II nano‐system.  相似文献   
55.
Although molecular dynamics methods are commonly used to drive biomolecular simulations, the technique provides insufficient sampling to impact studies of the 200-300 residue proteins of greatest interest. One severe limitation of molecular dynamics is that the integrators are restricted by resonance phenomena to small time steps (Delta t<8 fs) much slower then the time scales of important structural and solvent rearrangements. Here, a novel set of equations of motion and a reversible, resonance-free, integrator are designed which permit step sizes on the order of 100 fs to be used.  相似文献   
56.
In this study, liquid membranes denoted as polymer inclusion membranes (PIMs) consisting of cellulose triacetate (CTA) as a polymer matrix, o-nitrophenyl octyl ether (NPOE) as a plasticiser and phosphonium ionic liquids, trihexyltetradecylphosphonium chloride (Cyphos® IL 101) and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate (Cyphos® IL 104), as carriers of metal ions were developed. The transport of Fe(II) and Fe(III) from chloride aqueous solutions across PIMs was investigated. It is shown that these phosphonium ionic liquids are effective carriers of Fe(III) ions through PIMs. While, for Fe(II), the highest value of extraction efficiency and recovery factor after 72 h does not exceed 40%, by contrast, the values of these parameters for Fe(III) transport ranged from 60% to almost 100%. Additionally, the results indicate the transport rate to be strongly influenced by the amount of carrier in the membrane. The highest initial flux of Fe(III) and permeability coefficient are noted for the membrane containing 40 mass % Cyphos® IL 101. However, it is shown that the transport of Fe(III) increases as the carrier content is increased then decreases at a content of the carrier equal to 40 mass %. It appears that the Fe(III)-carrier complex decomposes with difficulty at the interface of the membrane-receiving phase, hence leading to low values of recovery factor Fe(III).  相似文献   
57.
58.
The stability constants of the complexes formed in the N,N’-bis(5-methylsalicylidene)-4-methyl-1,3-phenylenediamine (H2L) and La(III), Eu(III), Gd(III), Ho(III), and Lu(III) ion systems were determined in solution with the potentiometric method. The pH-metric titrations were performed in dimethyl sulfoxide/water (v:v, 30:70) mixture at 25.0 °C in 0.1 M LiNO3 ionic strength. The tests were performed for systems with Ln(III) to H2L 1:2 and 1:3 molar ratio but only data of the systems with the metal/ligand ratio 1:2 were taken into calculation. The molar ratio 1:1 was not studied because of the high coordination numbers of the lanthanide ions, and inadequate donor atoms of the ligand. Computer analysis (HYPERQUAD software) of potentiometric data indicated that in solution the lanthanide (Ln) complexes exist as LnL2, Ln(HL)2, and Ln(H2L)2 forms, depending on pH unlike to the solid state where only one form of Ln(H2L)2 occurs. Formation constants increase with decreasing size of the Ln(III) ions. Moreover, complex formation in the Ln3+/H2L systems in solution was performed using UV–Vis spectrophotometric titration.  相似文献   
59.
There are many atomic scale systems in materials, chemistry, and biology that can be effectively modeled as finite in two of the physical spatial dimensions and periodically replicated in the third including nanoscale metallic and semiconducting wires, carbon nanotubes, and DNA. However, it is difficult to design techniques to treat long range forces in these systems without truncation or recourse to slowly convergent supercells or computationally inefficient Poisson solvers. In this paper, a rigorous reciprocal space based formalism which permits long range forces on wires to be evaluated simply and easily via a small modification of existing methods for three dimensional periodicity is derived. The formalism is applied to determine long range interactions both between point particles using an Ewald-like approach and the continuous charge distributions that appear in electronic structure calculations. In this way, both empirical force field calculations and, for example, plane-wave based density functional theory computations on wires can be performed easily. The methodology is tested on model and realistic systems including a lithium doped carbon nanotube.  相似文献   
60.
Free proline amino acid is a natural cryoprotectant expressed by numerous organisms under low-temperature stress. Previous reports have suggested that complex assemblies underlie its functional properties. We investigate here aqueous proline solutions as a function of temperature using combinations of Raman spectroscopy, Rayleigh-Brillouin light scattering, and molecular dynamics simulations with the view to revealing the molecular origins of the mixtures' functionality as a cryoprotectant. The evolution of the Brillouin frequency shifts and line widths with temperature shows that, above a critical proline concentration, the water-like dynamics is suppressed and viscoelastic behavior emerges: Here, the Landau-Placzek ratio also shows a temperature-independent maximum arising from concentration fluctuations. Molecular dynamics simulations reveal that the water-water correlations in the mixtures depend much more weakly on temperature than does bulk water. By contrast, the water OH Raman bands exhibit strong red-shifts on cooling similar to those seen in ices; however, no evidence of ice lattice phonons is observed in the low-frequency spectrum. We attribute this primarily to enhanced proline-water hydrogen bonding. In general, the picture that emerges is that aqueous proline is a heterogeneous mixture on molecular length scales (characterized by significant concentration fluctuations rather than well-defined aggregates). Simulations reveal that proline also appears to suppress the normal dependence of water structure on temperature and preserves the ambient-temperature correlations even in very cold solutions. The water structure in cold proline solutions therefore appears to be similar to that at a higher effective temperature. This, coupled with the emergence of glassy dynamics offers a molecular explanation for the functional properties of proline as a cryoprotectant without the need to invoke previously proposed complex aggregates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号