首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54332篇
  免费   10251篇
  国内免费   1503篇
化学   53781篇
晶体学   447篇
力学   914篇
数学   5100篇
物理学   5844篇
  2023年   133篇
  2022年   134篇
  2021年   429篇
  2020年   1593篇
  2019年   2932篇
  2018年   1234篇
  2017年   874篇
  2016年   3907篇
  2015年   4000篇
  2014年   3986篇
  2013年   5023篇
  2012年   4016篇
  2011年   3363篇
  2010年   3527篇
  2009年   3404篇
  2008年   3394篇
  2007年   2763篇
  2006年   2407篇
  2005年   2506篇
  2004年   2196篇
  2003年   1952篇
  2002年   2607篇
  2001年   1649篇
  2000年   1552篇
  1999年   639篇
  1998年   310篇
  1997年   284篇
  1996年   292篇
  1995年   275篇
  1994年   247篇
  1993年   248篇
  1992年   229篇
  1991年   207篇
  1990年   203篇
  1989年   211篇
  1988年   180篇
  1987年   145篇
  1986年   134篇
  1985年   207篇
  1984年   210篇
  1983年   164篇
  1982年   202篇
  1981年   206篇
  1980年   162篇
  1979年   163篇
  1978年   194篇
  1977年   143篇
  1976年   148篇
  1975年   149篇
  1974年   123篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
21.
In the view of substrate availability, atomic efficiency and cost, directly using arenols as coupling partners in cross‐coupling, would be one of the most attractive goals. Up to date, many efforts have been made to activate the C—O bond of phenols with different strategies, for example, through in‐situ formed intermediates, through a catalytic reductive dearomatization‐condensation‐rearomatization sequence or catalytic deoxygenation. In this review, we summarized recent advances in cross‐couplings of arenols as the electrophiles via C—O activation.  相似文献   
22.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
23.
Tetrahydrotetrazoles are five‐membered‐ring heterocycles containing four contiguous saturated nitrogen atoms. Very few examples of such compounds have been reported in the literature. Our previous attempt at the synthesis of a member of this class of compound suggested that the N—N bonds may be more labile than expected. This finding raised the question as to whether the structures of any of the previously reported tetrahydrotetrazoles had been properly assigned. We have reproduced the synthesis of a reported tetrahydrotetrazole, namely 1,2‐di‐tert‐butyl 3‐phenyl‐1H,2H,3H,10bH‐[1,2,3,4]tetrazolo[5,1‐a]isoquinoline‐1,2‐dicarboxylate, C25H30N4O4, and have now confidently confirmed its structure via X‐ray crystallography. However, while sufficiently stable in the crystal phase, we discovered that it remains very labile in solution (having a half‐life of only 15 min at 20 °C in CDCl3). A tentative reaction pathway for its dissociation based on 1H NMR spectral evidence is provided.  相似文献   
24.
25.
Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome‐based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.  相似文献   
26.
27.
Triazines are widely used in agriculture around the world as selective pre‐ and post‐emergence herbicides for the control of broad leaf and grassy weeds. With high toxicity and persistence, triazines can contaminate the environment and crops, so the development of rapid and sensitive methods for the determination of different triazines is necessary. Capillary electrophoresis comprises a group of techniques used to separate chemical mixtures. Analytical separation is based on different electrophoretic mobilities. This review focuses on the analysis of triazine herbicides with different modes of capillary electrophoresis, including capillary zone electrophoresis, micellar electrokinetic capillary electrophoresis, capillary electrochromatography and nonaqueous capillary electrophoresis. Determinations of triazines in various matrices such as surface water, groundwater, vegetables, soil and grains are emphasized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
28.
A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase‐supported metal–organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors.  相似文献   
29.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号