首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1287篇
  免费   64篇
  国内免费   2篇
化学   1123篇
晶体学   8篇
力学   16篇
数学   72篇
物理学   134篇
  2023年   14篇
  2022年   111篇
  2021年   99篇
  2020年   35篇
  2019年   28篇
  2018年   24篇
  2017年   34篇
  2016年   71篇
  2015年   54篇
  2014年   77篇
  2013年   98篇
  2012年   117篇
  2011年   96篇
  2010年   62篇
  2009年   50篇
  2008年   65篇
  2007年   64篇
  2006年   50篇
  2005年   55篇
  2004年   36篇
  2003年   27篇
  2002年   17篇
  2001年   10篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
  1965年   1篇
  1928年   1篇
排序方式: 共有1353条查询结果,搜索用时 31 毫秒
991.
Recent single-molecule atomic force microscopy (AFM) experiments have revealed that some polysaccharides display large deviations from force-extension relationships of other polymers which typically behave as simple entropic springs. However, the mechanism of these deviations has not been fully elucidated. Here we report the use of novel quantum mechanical methodologies, the divide-and-conquer linear scaling approach and the self-consistent charge density functional-based tight binding (SCC-DFTB) method, to unravel the mechanism of the extensibility of the polysaccharide amylose, which in water displays particularly large deviations from the simple entropic elasticity. We studied the deformations of maltose, a building block of amylose, both in a vacuum and in solution. To simulate the deformations in solution, the TIP3P molecular mechanical model is used to model the solvent water, and the SCC-DFTB method is used to model the solute. The interactions between the solute and water are treated by the combined quantum mechanical and molecular mechanical approach. We find that water significantly affects the mechanical properties of maltose. Furthermore, we performed two nanosecond-scale steered molecular dynamics simulations for single amylose chains composed of 10 glucopyranose rings in solution. Our SCC-DFTB/MM simulations reproduce the experimentally measured force-extension curve, and we find that the force-induced chair-to-boat transitions of glucopyranose rings are responsible for the characteristic plateau in the force-extension curve of amylose. In addition, we performed single-molecule AFM measurements on carboxymethyl amylose, and we found that, in contrast to the results of an earlier work by others, these side groups do not significantly affect amylose elasticity. By combining our experimental and modeling results, we conclude that the nonentropic elastic behavior of amylose is governed by the mechanics of pyranose rings themselves and their force-induced conformational transitions.  相似文献   
992.
Recent results using inverse scattering techniques interpret every solution φ(x, y) of the sine-Gordon equation as a nonlinear superposition of solutions along the axes x=0 and y=0. This has a well-known geometric interpretation, namely that every weakly regular surface of Gauss curvature K=−1, in arc length asymptotic line parametrization, is uniquely determined by the values φ(x, 0) and φ(0, y) of its coordinate angle along the axes. We introduce a generalized Weierstrass representation of pseudospherical surfaces that depends only on these values, and we explicitely construct the associated family of pseudospherical immersions corresponding to it.Mathematics Subject Classifications (2000): 53A10, 58E20.  相似文献   
993.
Important goals of BNL RHIC and CERN LHC experiments with ion beams include the creation and study of new forms of matter, such as the quark gluon plasma. Heavy quark production and attenuation provide unique tomographic probes of that matter. We predict the suppression pattern of open charm and beauty in Au+Au collisions at RHIC and LHC energies based on the DGLV formalism of radiative energy loss. A cancellation between effects due to the sqrt[s] energy dependence of the high p(T) slope and heavy quark energy loss is predicted to lead to surprising similarity of heavy quark suppression at RHIC and LHC.  相似文献   
994.
Treatment of [(ppbpa)Zn](ClO4)2 (1(ClO4)2, ppbpa = N-((6-(pivaloylamido)-2-pyridyl)methyl)-N,N-bis((2-pyridyl)methyl)amine) with 1 equiv of Me(4)NOH.5H(2)O in methanol-acetonitrile solution results within minutes in the stoichiometric formation of a complex having a deprotonated amide, [(ppbpa-)Zn]ClO4 (3). Complex 3 has been characterized by 1H and 13C NMR, FTIR, and elemental analysis. Notably, upfield shifts of specific 1H NMR resonances of the amide-appended pyridyl moiety in 3, versus those found for 1(ClO4)2, indicate delocalization of the anionic charge within the amide-appended pyridyl donor of this complex. Heating of analytically pure 3 in methanol-acetonitrile results in amide alcoholysis. Overall, this alcoholysis reaction is second-order, with a first-order dependence on both 3 and methanol. Analysis of the rate of decay of 3 as a function of temperature yielded activation parameters consistent with an intramolecular amide cleavage process (DeltaH++ = 15.0(3) kcal/mol, DeltaS++ = -33(1) eu). A possible reaction mechanism for amide alcoholysis is presented which involves reaction of the deprotonated amide intermediate 3 with methanol to produce a Lewis activated-type structure from which amide cleavage may be initiated. Additional support for this mechanistic pathway has been obtained through examination of the analogous ethanolysis reaction and via evaluation of the effect of varying steric hindrance near the amide carbonyl unit.  相似文献   
995.
Vancomycin, a "last chance" antibiotic, is a glycopeptide consisting of an oligopeptide unit being potentially the effective binder of Cu2+ ions. The potentiometric and spectroscopic studies (UV-Vis, CD, EPR, NMR) have shown that, indeed, the peptide unit binds cupric ions very effectively forming almost instantly the 3N complex involving the N-terminal nitrogen donors in the metal ion coordination. The comparison of the binding ability of vancomycin with other peptide chelators clearly shows the efficiency of this antibiotic in metal ion coordination. It is very likely that Cu2+ ions may play a crucial role in the pharmacology of vancomycin, particularly when administered in high doses.  相似文献   
996.
997.
Following the preparation of inclusion complex of cetirizine (CTZ) and β-cyclodextrin (β-CD), the compound was investigated to assess the possibility of modifying the physicochemical properties (solubility, release, stability, permeability) of CTZ after complexation that are vital for subsequent formulation studies involving the said complex. Changes in FT-IR/Raman spectra, DSC thermograms and XRD diffractograms confirmed the formation of a CTZ–β-CD system. Hydrophilic interaction chromatography with a DAD detector was employed to determine alterations of the CTZ concentration during studies following complexation. An analysis of a phase-solubility diagram of cCTZ?=?fcβ-CD indicated a linear rise in the solubility of CTZ as the concentration of β-CD increased. The inclusion of CTZ in a system with β-CD significantly reduced the instability of CTZ in the presence of oxidizing factors. It was also found that regardless of the pH of the acceptor fluids used in the release studies an increase was observed in the concentration of CTZ in CD system compared to its free form. The ability to permeate artificial biological membranes manifested by CTZ after complexation was enhanced as well. In summary, CD has significant potential to mask the bitter taste of CTZ and to counter the instability induced by oxidizing factors.  相似文献   
998.
Energetic materials such as a mixture of guanidine nitrate (GN)/basic copper nitrate (BCN) are used as gas generators in automotive airbag systems. However, at the time of the airbag inflation, the gas generators release toxic combustion gases such as CO, NH3, and NOx. In this study, we investigated the combustion and thermal decomposition behaviors of GN/BCN mixture, focusing primarily on their exhaust gas composition. As a result, when the exhaust gas of the combustion under constant pressure in an inert gas stream was analyzed using a detection tube, the amount of NOx (mainly NO) yielded greater decrease with increasing atmospheric pressure as compared to the amounts of CO and NH3. Thus, provided GN/BCN is ignited in a closed container, a large amount of NOx is presumed to have been released during the initial stage of combustion, which yielded comparatively low pressure. Results of the thermogravimetry–differential scanning calorimetry–Fourier transform infrared spectroscopy (TG/DSC/FTIR) indicated that the GN/BCN mixture caused endothermic decomposition at 170 °C and exothermic decomposition at 208 °C, which was accompanied by 66% mass loss. The decomposition gases, CO2, N2O, and H2O, were detected via FTIR spectrum. Because N2O was not detected in the combustion gas, it was suggested that the detected N2O was generated at a low temperature and decomposed in high-temperature combustion.  相似文献   
999.
Journal of Thermal Analysis and Calorimetry - This work investigates the thermal polymerization process of a methylene diphenyl diisocyanate (MDI) monomer as well as its thermal degradation...  相似文献   
1000.
The combination of oligonucleotides and synthetic supramolecular systems allows for novel and long‐needed modes of regulation of the self‐assembly of both molecular elements. Discotic molecules were conjugated with short oligonucleotides and their assembly into responsive supramolecular wires studied. The self‐assembly of the discotic molecules provides additional stability for DNA‐duplex formation owing to a cooperative effect. The appended oligonucleotides allow for positional control of the discotic elements within the supramolecular wire. The programmed assembly of these hybrid architectures can be modulated through the DNA, for example, by changing the number of base pairs or salt concentration, and through the discotic platform by the addition of discotic elements without oligonucleotide handles. These hybrid supramolecular‐DNA structures allow for advanced levels of control over 1D dynamic platforms with responsive regulatory elements at the interface with biological systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号