首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1773篇
  免费   31篇
  国内免费   6篇
化学   1203篇
晶体学   24篇
力学   17篇
数学   134篇
物理学   432篇
  2020年   16篇
  2019年   21篇
  2018年   17篇
  2017年   17篇
  2016年   32篇
  2015年   14篇
  2014年   25篇
  2013年   95篇
  2012年   46篇
  2011年   59篇
  2010年   36篇
  2009年   37篇
  2008年   53篇
  2007年   51篇
  2006年   55篇
  2005年   69篇
  2004年   49篇
  2003年   51篇
  2002年   37篇
  2001年   43篇
  2000年   41篇
  1999年   25篇
  1998年   14篇
  1997年   25篇
  1996年   27篇
  1995年   15篇
  1994年   23篇
  1993年   34篇
  1991年   24篇
  1990年   20篇
  1989年   28篇
  1988年   23篇
  1987年   31篇
  1986年   30篇
  1985年   27篇
  1984年   30篇
  1983年   24篇
  1982年   38篇
  1981年   26篇
  1980年   36篇
  1979年   22篇
  1978年   15篇
  1977年   31篇
  1976年   22篇
  1975年   20篇
  1974年   30篇
  1973年   20篇
  1972年   20篇
  1970年   19篇
  1966年   13篇
排序方式: 共有1810条查询结果,搜索用时 15 毫秒
101.
A protocol for the ab initio construction of a realistic cylindrical pore in amorphous silica, serving as a geometric nanoscale confinement for liquids and solutions, is presented. Upon filling the pore with liquid water at different densities, the structure and dynamics of the liquid inside the confinement can be characterized. At high density, the pore introduces long‐range oscillations into the water density profile, which makes the water structure unlike that of the bulk across the entire pore. The tetrahedral structure of water is also affected up to the second solvation shell of the pore wall. Furthermore, the effects of the confinement on hydrogen bonding and diffusion, resulting in a weakening and distortion of the water structure at the pore walls and a slowdown in diffusion, are characterized.  相似文献   
102.
The electron-poor palladium(0) complex L3Pd (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) reacts with Grignard reagents RMgX and organolithium compounds RLi via transmetalation to furnish the anionic organopalladates [L2PdR], as shown by negative-ion mode electrospray-ionization mass spectrometry. These palladates undergo oxidative additions of organyl halides R′X (or related SN2-type reactions) followed by further transmetalation. Gas-phase fragmentation of the resulting heteroleptic palladate(II) complexes results in the reductive elimination of the cross-coupling products RR′. This reaction sequence corresponds to a catalytic cycle, in which the order of the elementary steps of transmetalation and oxidative addition is switched relative to that of palladium-catalyzed cross-coupling reactions proceeding via neutral intermediates. An attractive feature of the palladate-based catalytic system is its ability to mediate challenging alkyl–alkyl coupling reactions. However, the poor stability of the phosphine ligand L against decomposition reactions has so far prevented its successful use in practical applications.  相似文献   
103.
Owing to its outstanding elastic properties, the nitride spinel γ‐Si3N4 is of considered interest for materials scientists and chemists. DFT calculations suggest that Si3N4‐analog beryllium phosphorus nitride BeP2N4 adopts the spinel structure at elevated pressures as well and shows outstanding elastic properties. Herein, we investigate phenakite‐type BeP2N4 by single‐crystal synchrotron X‐ray diffraction and report the phase transition into the spinel‐type phase at 47 GPa and 1800 K in a laser‐heated diamond anvil cell. The structure of spinel‐type BeP2N4 was refined from pressure‐dependent in situ synchrotron powder X‐ray diffraction measurements down to ambient pressure, which proves spinel‐type BeP2N4 a quenchable and metastable phase at ambient conditions. Its isothermal bulk modulus was determined to 325(8) GPa from equation of state, which indicates that spinel‐type BeP2N4 is an ultraincompressible material.  相似文献   
104.
We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.  相似文献   
105.

The diffusive behavior of nanoparticles inside porous materials is attracting a lot of interest in the context of understanding, modeling, and optimization of many technical processes. A very powerful technique for characterizing the diffusive behavior of particles in free media is dynamic light scattering (DLS). The applicability of the method in porous media is considered, however, to be rather difficult due to the presence of multiple sources of scattering. In contrast to most of the previous approaches, the DLS method was applied without ensuring matching refractive indices of solvent and porous matrix in the present study. To test the capabilities of the method, the diffusion of spherical gold nanoparticles within the interconnected, periodic nanopores of inverse opals was analyzed. Despite the complexity of this system, which involves many interfaces and different refractive indices, a clear signal related to the motion of particles inside the porous media was obtained. As expected, the diffusive process inside the porous sample slowed down compared to the particle diffusion in free media. The obtained effective diffusion coefficients were found to be wave vector-dependent. They increased linearly with increasing spatial extension of the probed particle concentration fluctuations. On average, the slowing-down factor measured in this work agrees within combined uncertainties with literature data.

  相似文献   
106.
Detailed investigations of laser–ion interactions require well-defined ion targets and detection techniques for high-sensitivity measurements of reaction educts and products. To this end, we have designed and built the High-Intensity Laser-Ion Trap Experiment Penning trap setup, which features various ion-target preparation techniques including selection, cooling, compression, and positioning as well as destructive and non-destructive measurement techniques to determine the number of stored ions for all charge states individually and simultaneously. We have recently performed first commissioning experiments of ion deceleration and dynamic ion capture with highly charged ion bunches from an electron beam ion source. We have characterized our single-pass non-destructive ion counter in detail and were able to determine the ion velocity as well as the number of ions from the signals acquired.  相似文献   
107.
Applied Magnetic Resonance - The isotope effect H → D on diffusion in proton-exchange membrane Nafion 212 is investigated using 1H and 2H nuclear magnetic resonance (NMR)...  相似文献   
108.
109.
In this work the interaction of a non-steroidal anti-inflammatory drug (NSAID), diclofenac, with egg yolk phosphatidylcoline (EPC) liposomes, used as cell-membrane models, was quantified by determination of the partition coefficient. The liposome/aqueous phase partition coefficient was determined by derivative spectrophotometry, fluorescence quenching, and measurement of zeta-potential. Theoretical models based on simple partition of the diclofenac between two different media, were used to fit the experimental data, enabling the determination of Kp. The three techniques used yielded similar results. The effects of the interaction on the membranes characteristics were further evaluated, either by studying membrane potential changes or by effects on membrane fluidity. The liposome membrane potential and the size and size-homogeneity of liposomes were measured by light scattering. The effects of diclofenac on the internal viscosity or fluidity of the membrane were determined by use of spectroscopic probes—a series of n-(9-anthroyloxy) fatty acids in which the carboxyl terminal group is located at the interfacial region of the membrane and the fluorescent anthracene group is attached at different positions along the fatty acid chain. The location of the diclofenac on the membrane was also evaluated, by fluorescence quenching using the same series of fluorescent probes. Because the fluorescent anthracene group is attached at different positions along the fatty acid chain, it is possible to label at a graded series of depths in the bilayer. The interactions between the drug and the probe are a means of predicting the location of the drug on the membrane.  相似文献   
110.
Molecular clips hold the potential of self-association and the ability to form host–guest complexes. Here we describe the synthesis of a 1,2-dimethoxyphenyl terminated glycoluril molecular clip (2) that binds with smaller solvent molecules by π?H–C and C=O?H–O non-covalent interactions. We obtained single crystals of 2 and 2 + CH2Cl2, CH3OH, CH3CN, and DMF solvents complexed within the clip. These solvents always form two π?H–C interactions between the aromatic rings in the clip, and CH3OH formed an additional C=O?H–O hydrogen bond with the glycoluril carbonyl group. Based on single crystal data we found that π?H–C interactions of 2 + CH2Cl2 are stronger than 2 + CH3CN and 2?+?DMF, due to the presence of stronger electron withdrawing groups in CH2Cl2, which lead to a decrease in dihedral angle of two glycoluril aromatic planes. We also investigated the non-covalent interaction energies of these solvent molecules with 2 using computational methods.

Graphical Abstract

Several solvent adducts of a glycoluril derivative have been isolated and characterized by single crystal X-ray diffraction, revealing two common pi?H–C non-covalent bonds within the molecular clip.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号