首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   9篇
化学   117篇
数学   1篇
物理学   5篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   13篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   13篇
  2007年   8篇
  2006年   7篇
  2005年   8篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1997年   4篇
  1994年   1篇
  1992年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
41.
Methemoglobin (bovine) is immobilized from aqueous phosphate buffer (pH 5.5) solution into thin porous TiO(2) (anatase) films at ITO electrode surfaces. Films of TiO(2) are produced in a deposition process employing 40 nm diameter TiO(2) nanoparticles suspended in dry methanol followed by calcination. The pore size in these films is sufficient for methemoglobin (ca. 6 nm diameter) to diffuse into the porous structure (over several hours) and to remain immobilized in electrochemically active form. The electrochemical reduction of methemoglobin immobilized in TiO(2) and immersed in aqueous phosphate buffer at pH 5.5 is observed in two steps with (i) a small quasi-reversible voltammetric response at -0.16 V vs. SCE (Process 1) and (ii) an irreversible reduction peak at ca. -0.5 V vs. SCE (Process 2). The irreversible response is recovered only after slow chemical re-oxidation of hemoglobin to methemoglobin. At sufficiently negative applied potential "electrochemical doping" of the TiO(2) host is observed to lead to a considerably enhanced reduction Process 1. TiO(2) can be temporarily switched from a non-conducting (irreversible electron transfer) into a conducting (reversible electron transfer) state.  相似文献   
42.
Reversible bicarbonate and carbonate liquid|liquid ion transfer processes from aqueous solution into an organic 4-(3-phenylpropyl)pyridine phase are driven electrochemically with TPPMn(III/II) and shown to be facilitated over a wide pH range by 2-naphthylboronic acid (bicarbonate transfer potential -0.08 V vs. SCE; binding constant K(AB) = 10(2) mol(-1) dm(3) and carbonate dianion transfer potential 0.07 V vs. SCE; binding constant K(AB2) = 2 × 10(10) mol(-2) dm(6)).  相似文献   
43.
Metal-organic framework (MOF) materials based on zinc(II) and aluminium(III) dicarboxylate frameworks with covalently attached ferrocene functional redox groups were synthesised by post-synthetic modification and investigated by voltammetry in aqueous and non-aqueous media. In the voltammetry experiments, ferrocene oxidation occurs in all cases, but chemically reversible and stable ferrocene oxidation without decay of the voltammetric response requires a "mild" dichloroethane solvent environment. The voltammetric response in this case is identified as "surface-confined" with fast surface-hopping of electrons and without affecting the bulk of MOF microcrystals. In aqueous media a more complex pH-dependent multi-stage redox process is observed associated with chemically irreversible bulk oxidation and disintegration of the MOF framework. A characteristic 30 mV per pH unit dependence of redox potentials is observed attributed to a "framework effect": the hydroxide-driven MOF framework dissolution.  相似文献   
44.
Ion transfer at liquid|liquid junctions is one of the most fundamental processes in nature. It occurs coupled to simultaneous electron transfer at the line junction (or triple phase boundary) formed by the two liquids in contact to an electrode surface. The triple phase boundary can be assembled from a redox active microdroplet deposit of a water-immiscible liquid on a suitable electrode surface immersed into aqueous electrolyte. Ion transfer voltammetry measurements at this type of electrode allow both thermodynamic and kinetic parameters for coupled ion and electron transfer processes to be obtained. This overview summarises some recent advances in understanding and application of triple phase boundary redox processes at organic liquid|aqueous electrolyte|working electrode junctions. The design of novel types of electrodes is considered based on (i) extended triple phase boundaries, (ii) porous membrane processes, (iii) hydrodynamic effects, and (iv) generator-collector triple phase boundary systems. Novel facilitated ion transfer processes and photo-electrochemical processes at triple phase boundary electrodes are proposed. Potential future applications of triple phase boundary redox systems in electrosynthesis, sensing, and light energy harvesting are indicated.  相似文献   
45.
Nanofilm deposits of a porous Sn(IV) oxide are formed by anodic electrodeposition on a polished boron-doped diamond electrode immersed in an aqueous Sn2+ solution. Mechanically and electrochemically stable deposits of 10–15 nm thickness are formed irrespective of the Sn2+ concentration and mass-transport enhancement by power ultrasound. Atomic force microscopy images indicate the presence of a smooth and noncrystalline film, which is stable under ambient conditions. n-type semiconducting characteristics are observed for the aqueous solution redox couples Fe(CN)6 3–/4– and Ru(NH3)6 3+/2+. However, preliminary results from voltammetric experiments indicate that the small and neutral organic molecule N,N,N′,N′-tetramethylphenylenediamine is able to diffuse through the porous film to undergo oxidation directly at the surface of the boron-doped diamond electrode. Electronic Publication  相似文献   
46.
Addition of chloride ions to boron bis(phenolate) 5 in dichloromethane solution produces a selective fluorescence decrease. The fluorescence change is believed to be caused by associative hydrogen bonding between the chloride ion and two boronic acid groups. While addition of fluoride ions to bis(phenolate) 5 generates a purple colorimetric response, the colorimetric response is caused by fluoride induced B-O bond cleavage and air oxidation of the phenolate anion formed by this dissociation.  相似文献   
47.
Hemoglobin (molecular weight 64.5 kDa, isoelectric point 7.4) in 0.1 M phosphate buffer solution at pH 5.5 readily adsorbs onto mesoporous TiO2 phytate films, which have been formed in a layer-by-layer deposition process from TiO2 nanoparticles (ca. 6–10 nm diameter) and phytic acid at tin-doped indium oxide (ITO) electrodes. Quartz crystal microbalance data, voltammetry, and SEM evidence are consistent with hemoglobin adsorption only into the outer TiO2 phytate surface layer. The size of the tetrametric hemoglobin protein (ca. 6 nm diameter) appears to be too big for a homogeneous film to form.The modified ITO electrode immersed in 0.1 M phosphate buffer solution at pH 5.5 allows reversible electron transfer for hemoglobin to be observed with a midpoint potential of 0.01 vs. SCE. Characteristic TiO2 phytate film thickness and pH effects are observed with both thicker films and lower proton activity causing ‘decoupling’ of the protein redox chemistry due to a reduced electrical conductivity of the TiO2 phytate film connecting hemoglobin with the electrode. This is the first example of a bi-layer nanofilm structure where the underlying TiO2 phytate film controls the electrochemical properties of the hemoglobin modified top-layer.  相似文献   
48.
Hydrophobic sol-gel films from methyltrimethoxysilane (MTMOS) are deposited onto glass and tin-doped indium oxide (ITO) coated glass substrates. Uniform and microporous films of ca. 200 nm thickness are obtained and investigated by scanning electron microscopy and by electrochemical techniques. From cyclic voltammograms for the oxidation of ferrocenedimethanol in aqueous 0.1 M KNO3 apparent diffusion coefficients and free volume data for processes within the film are derived and it is demonstrated that the film morphology can be controlled by the deposition timing. Two novel types of biphasic electrodes for observing liquid/liquid ion transfer reactions are introduced: (i) an ITO electrode coated with a hydrophobic sol-gel film and (ii) a hydrophobic sol-gel film on glass sputter-coated with 20 nm porous gold (porotrode). For the t-butylferrocene redox system deposited in the form of an organic liquid, very low and morphology dependent current responses are observed on modified ITO electrodes. However, the porotrode system allows biphasic electrode reactions to be driven with high efficiency and with no significant morphology effect of the hydrophobic sol-gel film. This type of nanofilm-modified electrode system will be of interest for biphasic sensor developments.  相似文献   
49.
Colloidal indigo is reduced to an aqueous solution of leuco-indigo in a mediated two-electron process converting the water-insoluble dye into the water-soluble leuco form. The colloidal dye does not interact directly with the electrode surface, and to employ an electrochemical process for this reduction, the redox mediator 1,8-dihydroxyanthraquinone (1,8-DHAQ) is used to transfer electrons from the electrode to the dye. The mediated reduction process is investigated at a (500-kHz ultrasound-assisted) rotating disc electrode, and the quantitative analysis of voltammetric data is attempted employing the Digisim numerical simulation software package. At the most effective temperature, 353 K, the diffusion coefficient for 1,8-DHAQ is (0.84±0.08)×10−9 m2 s−1, and it is shown that an apparently kinetically controlled reaction between the reduced form of the mediator and the colloidal indigo occurs within the diffusion layer at the electrode surface. The apparent bimolecular rate constant k app=3 mol m−3 s−1 for the rate law \fracd[ \textleuco - \textindigo ] dt = k\textapp ×[ \textmediator ] ×[ \textindigo ]\frac{{d{\left[ {{\text{leuco}} - {\text{indigo}}} \right]}}} {{dt}} = k_{{{\text{app}}}} \times {\left[ {{\text{mediator}}} \right]} \times {\left[ {{\text{indigo}}} \right]} is determined and attributed to a mediator diffusion controlled dissolution of the colloid particles. The average particle size and the number of molecules per particles are estimated from the apparent bimolecular rate constant and confirmed by scanning electron microscopy.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号