首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   16篇
化学   309篇
晶体学   1篇
力学   16篇
数学   123篇
物理学   117篇
  2024年   1篇
  2023年   7篇
  2022年   29篇
  2021年   23篇
  2020年   25篇
  2019年   19篇
  2018年   17篇
  2017年   11篇
  2016年   28篇
  2015年   24篇
  2014年   29篇
  2013年   33篇
  2012年   49篇
  2011年   43篇
  2010年   26篇
  2009年   24篇
  2008年   31篇
  2007年   30篇
  2006年   23篇
  2005年   15篇
  2004年   12篇
  2003年   10篇
  2002年   12篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1996年   4篇
  1995年   5篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1989年   3篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1973年   2篇
  1967年   1篇
排序方式: 共有566条查询结果,搜索用时 0 毫秒
61.
62.
63.
A novel spirocyclic γ-lactam, named spirostaphylotrichin W (1), was isolated together with the well known and closely related spirostaphylotrichins A, C, D, R and V, as well as triticone E, from the liquid cultures of Pyrenophora semeniperda (anamorph: Drechslera), a seed pathogen proposed for cheatgrass (Bromus tectorum) biocontrol. Spirostaphylotrichin W was characterized as (3S*,4S*,5S*,6S*,9Z,10Z)-4,6-dihydroxy-2,3-dimethoxy-3-methyl-10-propyliden-2-azaspiro [4.5]dec-8-ene-1,7-dione, by spectroscopic and chemical methods. The relative stereochemistry of spirostaphylotrichin W was assigned using NOESY experiments and in comparison to those of spirostaphylotrichin V (2) and triticone E (6). In fact, the relative stereochemistry at C-3 was the same of that of 2, while that at C-4 and C-6 was inverted in respect to that reported, respectively, for 2 and 6. In a B. tectorum coleoptile bioassay at concentration of 10−3, spirostaphylotrichin A proved to be the most active compound, followed by spirostaphylotrichins C and D. Spirostaphylotrichin W and V showed mild toxicity while spirostaphylotrichin R and triticone E were not active. When tested on host and non-host plants by leaf puncture bioassay, spirostaphylotrichins A, C and D caused the appearance of necrotic spots while the other compounds were inactive.  相似文献   
64.
We report a simple, highly stereoselective synthesis of (+)‐(S)‐γ‐ionone and (‐)‐(2S,6R)‐cis‐γ‐irone, two characteristic and precious odorants; the latter compound is a constituent of the essential oil obtained from iris rhizomes. Of general interest in this approach are the photoisomerization of an endo trisubstituted cyclohexene double bond to an exo vinyl group and the installation of the enone side chain through a [(NHC)AuI]‐catalyzed Meyer–Schuster‐like rearrangement. This required a careful investigation of the mechanism of the gold‐catalyzed reaction and a judicious selection of reaction conditions. In fact, it was found that the Meyer–Schuster reaction may compete with the oxy‐Cope rearrangement. Gold‐based catalytic systems can promote either reaction selectively. In the present system, the mononuclear gold complex [Au(IPr)Cl], in combination with the silver salt AgSbF6 in 100:1 butan‐2‐one/H2O, proved to efficiently promote the Meyer–Schuster rearrangement of propargylic benzoates, whereas the digold catalyst [{Au(IPr)}2(μ‐OH)][BF4] in anhydrous dichloromethane selectively promoted the oxy‐Cope rearrangement of propargylic alcohols.  相似文献   
65.
66.
The interaction between oxidized (ubiquinone-10) and reduced (ubiquinol-10) coenzyme Q 10 with dimyristoylphosphatidylcholine has been examined by differential scanning microcalorimetry, X-ray diffraction, infrared spectroscopy, and (2)H NMR. Microcalorimetry experiments showed that ubiquinol-10 perturbed considerably more the phase transition of the phospholipids than ubiquinone-10, both forms giving rise to a shoulder of the main transition peak at lower temperatures. Small angle X-ray diffraction showed an increase in d-spacing suggesting a thicker membrane in the presence of both ubiquinone-10 and ubiquinol-10, below the phase transition and a remarkable broadening of the peaks indicating a loss of the repetitive pattern of the lipid multilamellar vesicles. Infrared spectroscopy showed an increase in wavenumbers of the maximum of the CH 2 stretching vibration at temperatures below the phase transition, in the presence of ubiquinol-10, indicating an increase in the proportion of gauche isomers in the gel phase, whereas this effect was smaller for ubiquinone-10. A very small effect was observed at temperatures above the phase transition. (2)H NMR spectroscopy of perdeuterated DMPC showed only modest changes in the spectra of the phospholipids occasioned by the presence of coenzyme Q 10. These small changes were reflected, in the presence of ubiquinol-10, by a decrease in resolution indicating that the interaction between coenzyme Q and phospholipids changed the motion of the lipids. The change was also visible in the first spectral moment (M1), which is related with membrane order, which was slightly decreased at temperatures below the phase transition especially with ubiquinol-10. A slight decrease in M 1 values was also observed above the phase transition but only for ubiquinol-10. These results can be interpreted to indicate that most ubiquinone-10 molecules are localized in the center of the bilayer, but a considerable proportion of ubiquinol-10 molecules may span the bilayer interacting more extensively with the phospholipid acyl chains.  相似文献   
67.
Structure‐based drug development is often hampered by the lack of in vivo activity of promising compounds screened in vitro, due to low membrane permeability or poor intracellular binding selectivity. Herein, we show that ligand screening can be performed in living human cells by “intracellular protein‐observed” NMR spectroscopy, without requiring enzymatic activity measurements or other cellular assays. Quantitative binding information is obtained by fast, inexpensive 1H NMR experiments, providing intracellular dose‐ and time‐dependent ligand binding curves, from which kinetic and thermodynamic parameters linked to cell permeability and binding affinity and selectivity are obtained. The approach was applied to carbonic anhydrase and, in principle, can be extended to any NMR‐observable intracellular target. The results obtained are directly related to the potency of candidate drugs, that is, the required dose. The application of this approach at an early stage of the drug design pipeline could greatly increase the low success rate of modern drug development.  相似文献   
68.
Phenylmethanimine is an aromatic imine with a twofold relevance in chemistry: organic synthesis and astrochemistry. To tackle both aspects, a multidisciplinary strategy has been exploited and a new, easily accessible synthetic approach to generate stable imine-intermediates in the gas phase and in solution has been introduced. The combination of this formation pathway, based on the thermal decomposition of hydrobenzamide, with a state-of-the-art computational characterization of phenylmethanimine laid the foundation for its first laboratory observation by means of rotational electric resonance spectroscopy. Both E and Z isomers have been accurately characterized, thus providing a reliable basis to guide future astronomical observations. A further characterization has been carried out by nuclear magnetic resonance spectroscopy, showing the feasibility of this synthetic approach in solution. The temperature dependence as well as possible mechanisms of the thermolysis process have been examined.  相似文献   
69.
Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic compounds and they have gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported the ruthenium complex ([Ru(DIP)2(sq)](PF6) (where DIP is 4,7-diphenyl-1,10-phenantroline and sq is semiquinonate) with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2(mal)](PF6), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2(mal)](PF6), its stability in solutions and under conditions that resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity than cisplatin, inspiring further tests. [Ru(DIP)2(mal)](PF6) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism.  相似文献   
70.
Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号