首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
化学   50篇
数学   3篇
物理学   3篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   11篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有56条查询结果,搜索用时 0 毫秒
51.
The role in prebiotic chemistry that Br?nsted and Lewis sites, both present at the surface of common aluminosilicates, may have played in favoring the peptide bond formation has been addressed by ab initio methods within a cluster approach. B3LYP/6-31+G(d,p) free energy potential energy surfaces have been fully characterized for the model reaction glycine + NH3 --> 2-NH2 acetamide (mimicking the true 2 Gly --> GlyGly one) occurring on (i) a Lewis site, (ii) a Br?nsted site, and (iii) a combined action of Lewis/Br?nsted sites. Compared to the gas-phase (gp) activation free energy of 50 kcal/mol, the Lewis site alone reduces the gp barrier to 41 kcal/mol, whereas the activation by the Br?nsted site dramatically reduces the barrier to about 18 kcal/mol. Nevertheless, formation of the prereactant complex in this latter case will rarely occur, since water will easily displace the glycine molecule interacting with the Br?nsted site. However, if a realistic feldspar surface with neighboring Br?nsted and Lewis sites is considered, the proper prereactant complex is highly stabilized by a simultaneous interaction with the Lewis and the Br?nsted sites, in such a way that the Lewis site strongly attaches the glycine molecule to the surface whereas the Br?nsted site efficiently catalyzes the condensation reaction, showing that the interplay between Lewis/Br?nsted sites is an important issue. The free energy barrier computed for the realistic feldspar surface model is 26 kcal/mol. The role of dispersive interactions on the free energy barrier and the stabilization of the final product, not accounted for by the B3LYP functional, have been estimated and shown to be substantial. Speculations about further elongation of the formed dipeptide have been put forward on the basis of the relatively strong interaction energy of the formed GlyGly dipeptide with the aluminosilicate surface.  相似文献   
52.
In the present study, DFT periodic plane wave calculations, at the PBE-D level of theory, were carried out to investigate the interaction of DNA nucleobases with acidic montmorillonite. The surface model was considered in its octahedral (Osub) and tetrahedral (Tsub) substituted forms, known to have different acidic properties. The adsorption of adenine, guanine and cytosine was considered in both orthogonal and coplanar orientations with the surface, interacting with the proton via a given heteroatom. In almost all considered cases, adsorption involved the spontaneous proton transfer to the nucleobase, with a more pronounced character in the Osub structures. The binding energy is about 10 kcal mol(-1) larger for Osub than for Tsub complexes mainly due to the larger acidity in Osub surfaces and due to the better stabilization by H-bond contacts between the negatively charged surface and the protonated base. The binding energy of coplanar orientations of the base is observed to be as large as the orthogonal ones due to a balance between electrostatic and dispersion contributions. Finally the binding of guanine and adenine on the acidic surface amounts to 50 kcal mol(-1) while that of cytosine rises to 44 kcal mol(-1).  相似文献   
53.
54.
The influence of N7 protonation on the mechanism of the N-glycosidic bond hydrolysis in 2'-deoxyguanosine has been studied using density functional theory (DFT) methods. For the neutral system, two different pathways (with retention and inversion of configuration at the C1' anomeric carbon) have been found, both of them consisting of two steps and involving the formation of a dihydrofurane-like intermediate. The Gibbs free energy barrier for the first step is very high in both cases (53 and 46 kcal/mol for the process with inversion and with retention, respectively). However, the N7-protonated system shows a very different mechanism which consists of two steps. The first one leads to the formation of an oxacarbenium ion intermediate, with a Gibbs free energy barrier of 27 kcal/mol, and the second one corresponds to the nucleophilic attack of the water molecule to the oxacarbenium ion and takes place with a barrier of 1.3 kcal/mol. Thus, these results agree with a stepwise SN1 mechanism (DN*AN), with a discrete intermediate formed between the leaving group and the nucleophile approach, and show that N7 protonation strongly catalyzes the hydrolysis of the N-glycosidic bond, making the guanine a better leaving group. Finally, kinetic isotope effects have been calculated for the protonated system, and the results obtained are in very good agreement with experimental data for analogous systems.  相似文献   
55.
56.
The accurate engineering of interfaces between inorganic nanocrystals and semiconducting organic molecules is currently viewed as key for further developments in critical fields such as photovoltaics and photocatalysis. In this work, a new and unconventional source of interface interaction based on metal–metal bonds is presented. With this aim, an AuI organometallic gelator was exploited for the formation of hydrogel‐like nanocomposites containing inorganic nanoparticles and conjugated organic molecules. Noteworthy, the establishment of metallophilic interactions at the interface between the two moieties greatly enhances interparticle coupling in the composites. Thus, we believe that this new hybrid system might represent a promising alternative in several fields, such as in the fabrication of improved light‐harvesting devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号