全文获取类型
收费全文 | 37267篇 |
免费 | 8288篇 |
国内免费 | 1394篇 |
专业分类
化学 | 41869篇 |
晶体学 | 332篇 |
力学 | 452篇 |
数学 | 1964篇 |
物理学 | 2332篇 |
出版年
2023年 | 38篇 |
2022年 | 58篇 |
2021年 | 202篇 |
2020年 | 1259篇 |
2019年 | 2619篇 |
2018年 | 1030篇 |
2017年 | 659篇 |
2016年 | 3413篇 |
2015年 | 3549篇 |
2014年 | 3473篇 |
2013年 | 4099篇 |
2012年 | 3010篇 |
2011年 | 2258篇 |
2010年 | 2901篇 |
2009年 | 2818篇 |
2008年 | 2414篇 |
2007年 | 1798篇 |
2006年 | 1484篇 |
2005年 | 1669篇 |
2004年 | 1452篇 |
2003年 | 1362篇 |
2002年 | 2008篇 |
2001年 | 1345篇 |
2000年 | 1273篇 |
1999年 | 352篇 |
1998年 | 47篇 |
1997年 | 31篇 |
1996年 | 22篇 |
1995年 | 16篇 |
1994年 | 18篇 |
1993年 | 13篇 |
1992年 | 14篇 |
1990年 | 7篇 |
1989年 | 9篇 |
1988年 | 10篇 |
1987年 | 10篇 |
1985年 | 7篇 |
1984年 | 13篇 |
1983年 | 8篇 |
1982年 | 14篇 |
1981年 | 12篇 |
1980年 | 10篇 |
1979年 | 6篇 |
1978年 | 14篇 |
1977年 | 10篇 |
1976年 | 12篇 |
1975年 | 11篇 |
1974年 | 8篇 |
1958年 | 7篇 |
1957年 | 6篇 |
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
991.
Raluca‐Ioana Stefan‐vanStaden Mariana Mincu Jacobus Frederick vanStaden 《Electroanalysis》2019,31(7):1342-1347
Two stochastic microsensors based on immobilization of the complex between protoporphyrin IX and cobalt on nanographene paste and on the reduced graphene oxide paste were proposed for the simultaneous identification and quantification of bisphenols A (BPA), F (BPF) and Z (BPZ) from water samples. The signatures obtained for the BPA, BPF, and BFZ when both stochastic microsensors were used shown that the microsensors can be used for the discrimination between the three bisphenols in water samples. Very low limits of determination were obtained for the three bisphenols: 1fmol/L for BPA and BPF when the microsensor based on the immobilization of the complex between protoporphyrin IX and cobalt on nanographene paste was used, and 10fmol/L for BPZ when the microsensor based on the immobilization of the complex between protoporphyrin IX and cobalt on reduced graphene oxide paste was used. The linear concentration ranges covered by the proposed stochastic microsensors were: between 10?15 and 10?5 mol/L for BPA, between 10?15 and 10?7 mol/L for BPF, and between 10?13 and 10?10 mol/L for BPZ. The recoveries of the bisphenols in water samples were higher than 99.50 %, with RSD values lower than 1.00 %. 相似文献
992.
Aggregation‐induced emission (AIE) is a phenomenon where non‐luminescent compounds in solution become strongly luminescent in aggregate and solid phase. It provides a fertile ground for luminescent applications that has rapidly developed in the last 15 years. In this review, we focus on the contributions of theory and computations to understanding the molecular mechanism behind it. Starting from initial models, such as restriction of intramolecular rotations (RIR), and the calculation of non‐radiative rates with Fermi's golden rule (FGR), we center on studies of the global excited‐state potential energy surfaces that have provided the basis for the restricted access to a conical intersection (RACI) model. In this model, which has been shown to apply for a diverse group of AIEgens, the lack of fluorescence in solution comes from radiationless decay at a CI in solution that is hindered in the aggregate state. We also highlight how intermolecular interactions modulate the photophysics in the aggregate phase, in terms of fluorescence quantum yield and emission color. 相似文献
993.
Heavy metal ions are harmful to aquatic life and humans owing to their high toxicity and non‐biodegradability, so their removal from wastewater is an important task. Therefore, this work focuses on designing suitable, simple and economical nanosensors to detect and remove these metal ions with high selectivity and sensitivity. Based on this idea, different types of mesoporous materials such as hexagonal SBA‐15, cubic SBA‐16 and spherical MCM‐41, their chloro‐functionalized derivatives, as well as 4‐(4‐nitro‐phenylazo)‐naphthalen‐1‐ol (NPAN) azo dye have been synthesized, with the aim of designing some optical nanosensors for metal ions sensing applications. The mentioned azo dye has been anchored into the chloro‐functionalized mesoporous materials. The designed nanosensors were characterized using scanning and transmission electron microscopy as well as Fourier transform infrared and UV–visible spectral analysis, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analyses. Their optical sensing to various toxic metal ions such as Cd (II), Hg (II), Mn (II), Fe (II), Zn (II) and Pb (II) at different values of pH (1.1, 4.9, 7 and 12) was investigated. The optimization of experimental conditions, including the effect of pH and metal ion concentration, was examined. The experimental results showed that the solution pH had a major impact on metal ion detection. The optical nanosensors respond well to the tested metal ions, as reflected by the enhancement in both absorption and emission spectra upon adding different concentrations of the metal salts and were fully reversible on adding ethylene diamine tetra acetic acid or citric acid to the formed complexes. High values of the binding constants for the designed nanosensors were observed at pHs 7 and 12, confirming the strong chelation of different metals to the nanosensor at these pHs. Also, high binding constants and sensitivity were observed for NPAN‐MCM‐41 as a nanosensor to detect the different metal ions. From the obtained results, we succeeded in transforming the harmful azo dye into an environmentally friendly form via designing of the optical nanosensors used to detect toxic metal ions in wastewater with high sensitivity. 相似文献
994.
995.
996.
Coordination compounds of Cu (II), Y (III), Zr (IV) and La (III) with the tetradentate Schiff base (H2L) obtained through the condensation of p‐phenylenediamine with salicylaldehyde under reflux conditions. The complexes were characterized by elemental analysis, magnetic susceptibility, molar conductance and also, with various spectroscopic techniques such as 1H NMR, UV–Vis., IR and XRD techniques. Electrolytic nature of complexes was ascertained by molar conductance values. In these four complexes, the ligand chelates act in a tetradentate manner via azomethine nitrogen and oxygen atoms of phenolic groups. Electronic spectroscopic data are in agreement with an octahedral geometrical structure. Thermal degradation analyses in nitrogen gas were used to investigate the number and location of water molecules. The chemical formulae of metal complexes were confirmed by microanalytical data. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* were calculated from the DTG curves using Coats Redfern (CR) and Horowitz–Metzeger (HM) methods at n = 1 or n ≠ 1. Nematicidal activities indicate that the ligand exhibit greater activity when compared to its complexes. In addition metal complexes displayed good moderate nematicidal activities. 相似文献
997.
Mehrnoush Tamimi Majid M. Heravi Masoud Mirzaei Vahideh Zadsirjan Nahid Lotfian Hossein Eshtiagh‐Hosseini 《应用有机金属化学》2019,33(9)
A facile, efficient and eco‐friendly catalytic protocol was developed for the synthesis of medicinally important pyran‐annulated heterocycles via multicomponent reaction (MCR). Cyclocondensation of differently substituted aromatic aldehydes, malononitrile/ethyl cyanoacetate and various β‐dicarbonyl compounds in the presence of Ag3[PMo12O40]?nH2O as heterogeneous catalyst, in EtOH–H2O, afforded diverse pyran‐fused chromene analogues. The merits observed for this approach were it being conducted via MCR, using commercially available or easily accessible starting materials in the presence of a green and easily separable heterogeneous and reusable catalyst, and affording high yields of desired products in very short reaction times with high purity in one‐pot fashion, thus providing a superior alternative approach for the synthesis of pyran‐annulated heterocycles. 相似文献
998.
A.Z. El‐Sonbati W.H. Mahmoud Gehad G. Mohamed M.A. Diab Sh.M. Morgan S.Y. Abbas 《应用有机金属化学》2019,33(9)
A new Schiff base ligand named (E)‐2‐(((3‐aminophenyl)imino)methyl)phenol (HL) was prepared through condensation reaction of m‐phenylenediamine and 2‐hydroxybenzaldehyde in 1:1 molar ratio. The new ligand was characterized by elemental analysis and spectral techniques. The coordination behavior of a series of transition metal ions named Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) with the newly prepared Schiff base ligand (HL) is reported. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, IR, UV–Vis, 1H NMR, mass, electronic spectra, magnetic susceptibility and conductivity measurements and further their thermal stability was confirmed by thermogravimetric analysis (TG). From IR spectra, it was observed that the ligand is a neutral tridentate ligand coordinates to the metal ions through protonated phenolic oxygen, azomethine nitrogen and nitrogen atom of NH2 group. The existence, the number and the position of the water molecules was studied by thermal analysis. The molecular structures of the Schiff base ligand (HL) and its metal complexes were optimized theoretically and the quantum chemical parameters were calculated. The synthesized ligand and its complexes were screened for antimicrobial activities against bacterial species (Staphylococcus aureus and Bacillis subtilis, (gram positive bacteria)), (Salmonella SP., Escherichia coli and Pseudomonas aeruginosa, (gram negative bacteria)) and fungi (Aspergillus fumigatus and Candida albicans). The complexes were found to possess high biological activities against different organisms. Molecular docking was used to predict the efficiency of binding between Schiff base ligand (HL) and both receptors of Escherichia coli (3 T88) and Staphylococcus aureus (3Q8U). The receptor of Escherichia coli (3 T88) showed best interaction with Schiff base ligand (HL) compared to receptor of Staphylococcus aureu (3Q8U). 相似文献
999.
A copper metal–organic framework nanoparticles (Cu‐MOF‐NPs) synthesized via simple technique. The prepared Cu‐MOF‐NPs nanoparticles were further characterized using 1H‐NMR, FE‐SEM/EDX and thermal study (DSC/TGA). The FE‐SEM/EDX, thermal analysis, and NMR spectrum data with the other analysis support the nano‐Cu‐MOF structure and the monomeric unit (n[Cu (AIP)2(APY)(H2O)2].4H2O) of Cu‐MOF‐NPs. The photoluminescence (PL) studies of triiodothyronine hormone (T3) based on the prepared Cu‐MOF‐NPs investigated. The results revealed that the Cu‐MOF‐NPs might be used as a biosensor in the determination of triiodothyronine hormone (T3) in biological fluids through a significant quenching of the photoluminescence intensity of Cu‐MOF‐NPs at excitation wavelength 492 nm. The calibration plot achieved over the concentration range 0.0–200.0 ng/dL T3 hormone with a correlation coefficient 0.996 and limit of detection (LOD) and quantification (LOQ) 0.198 and 0.60 ng/dL, respectively. The PL spectra are indicating that Cu‐MOF‐NPs has highly selective sensing properties for T3 hormone without interfering with other human many hormones types. This approach considered a promising analytical tool for early diagnosis of the cases of thyroid disease. The mechanism of quenching between the Cu‐MOF‐NPs, and T3 hormone studied. The mechanism was a dynamic type and obtained due to the energy transfer mechanism. 相似文献
1000.
A fast and efficient eco‐friendly two‐step preparation of a palladium‐containing mesoporous carbon catalyst ( C1 ) from green and readily available carbon precursors (phloroglucinol and glyoxal), a porogen template (pluronic F‐127) and PdCl2 is described. Catalyst C1 contains ultra‐small Pd nanoparticles (1.2 nm) uniformly dispersed in the carbon network and shows an outstanding activity for Suzuki‐Miyaura reactions in pure water: extremely low amounts of palladium (10 μequiv. in most cases) are sufficient to afford almost palladium‐free products (containing <0.25 ppm of precious metal without further purification steps). 相似文献