首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   14篇
  国内免费   2篇
化学   274篇
晶体学   3篇
力学   8篇
数学   60篇
物理学   30篇
  2023年   5篇
  2022年   12篇
  2021年   22篇
  2020年   19篇
  2019年   8篇
  2018年   8篇
  2017年   13篇
  2016年   10篇
  2015年   17篇
  2014年   14篇
  2013年   14篇
  2012年   21篇
  2011年   28篇
  2010年   20篇
  2009年   11篇
  2008年   30篇
  2007年   22篇
  2006年   14篇
  2005年   19篇
  2004年   14篇
  2003年   14篇
  2002年   11篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1974年   1篇
排序方式: 共有375条查询结果,搜索用时 0 毫秒
371.
Epitaxial MgO thin films have been grown on semiinsulating GaAs (0 0 1) substrates using electron beam (e-beam) evaporation. X-ray diffraction indicates c-axis oriented MgO with (0 0 2) reflection only and rocking curve widths ∼2.2-3°. Transmission electron microscopy (TEM) analyses confirm an epitaxial growth of the MgO films. We study the microstructure and the defects at the interface between the MgO film and the GaAs substrate. Auger electron Spectroscopy (AES) concentration depth profiles reveal no contamination of the MgO films by As and Ga at different temperatures of the deposition process.  相似文献   
372.
Information transmission and storage have gained traction as unifying concepts to characterize biological systems and their chances of survival and evolution at multiple scales. Despite the potential for an information-based mathematical framework to offer new insights into life processes and ways to interact with and control them, the main legacy is that of Shannon’s, where a purely syntactic characterization of information scores systems on the basis of their maximum information efficiency. The latter metrics seem not entirely suitable for biological systems, where transmission and storage of different pieces of information (carrying different semantics) can result in different chances of survival. Based on an abstract mathematical model able to capture the parameters and behaviors of a population of single-celled organisms whose survival is correlated to information retrieval from the environment, this paper explores the aforementioned disconnect between classical information theory and biology. In this paper, we present a model, specified as a computational state machine, which is then utilized in a simulation framework constructed specifically to reveal emergence of a “subjective information”, i.e., trade-off between a living system’s capability to maximize the acquisition of information from the environment, and the maximization of its growth and survival over time. Simulations clearly show that a strategy that maximizes information efficiency results in a lower growth rate with respect to the strategy that gains less information but contains a higher meaning for survival.  相似文献   
373.
The development of new bioactive compounds represents one of the main purposes of the drug discovery process. Various tools can be employed to identify new drug candidates against pharmacologically relevant biological targets, and the search for new approaches and methodologies often represents a critical issue. In this context, in silico drug repositioning procedures are required even more in order to re-evaluate compounds that already showed poor biological results against a specific biological target. 3D structure-based pharmacophoric models, usually built for specific targets to accelerate the identification of new promising compounds, can be employed for drug repositioning campaigns as well. In this work, an in-house library of 190 synthesized compounds was re-evaluated using a 3D structure-based pharmacophoric model developed on soluble epoxide hydrolase (sEH). Among the analyzed compounds, a small set of quinazolinedione-based molecules, originally selected from a virtual combinatorial library and showing poor results when preliminarily investigated against heat shock protein 90 (Hsp90), was successfully repositioned against sEH, accounting the related built 3D structure-based pharmacophoric model. The promising results here obtained highlight the reliability of this computational workflow for accelerating the drug discovery/repositioning processes.  相似文献   
374.
Copper radioisotopes are generally employed for cancer imaging and therapy when firmly coordinated via a chelating agent coupled to a tumor-seeking vector. However, the biologically triggered Cu2+-Cu+ redox switching may constrain the in vivo integrity of the resulting complex, leading to demetallation processes. This unsought pathway is expected to be hindered by chelators bearing N, O, and S donors which appropriately complements the borderline-hard and soft nature of Cu2+ and Cu+. In this work, the labelling performances of a series of S-rich polyazamacrocyclic chelators with [64Cu]Cu2+ and the stability of the [64Cu]Cu-complexes thereof were evaluated. Among the chelators considered, the best results were obtained with 1,7-bis [2-(methylsulfanyl)ethyl]-4,10,diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S). DO2A2S was labelled at high molar activities in mild reaction conditions, and its [64Cu]Cu2+ complex showed excellent integrity in human serum over 24 h. Biodistribution studies in BALB/c nude mice performed with [64Cu][Cu(DO2A2S)] revealed a behavior similar to other [64Cu]Cu-labelled cyclen derivatives characterized by high liver and kidney uptake, which could either be ascribed to transchelation phenomena or metabolic processing of the intact complex.  相似文献   
375.
Journal of Solid State Electrochemistry - This article presents a process for producing LiNi1-xAlxO2 (0 <  ×  < 0.05) cathode material with...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号