首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   804篇
  免费   31篇
  国内免费   1篇
化学   654篇
晶体学   6篇
力学   9篇
数学   64篇
物理学   103篇
  2023年   7篇
  2022年   29篇
  2021年   49篇
  2020年   29篇
  2019年   36篇
  2018年   20篇
  2017年   20篇
  2016年   27篇
  2015年   34篇
  2014年   43篇
  2013年   61篇
  2012年   65篇
  2011年   77篇
  2010年   38篇
  2009年   30篇
  2008年   43篇
  2007年   51篇
  2006年   37篇
  2005年   25篇
  2004年   27篇
  2003年   15篇
  2002年   11篇
  2001年   6篇
  2000年   3篇
  1999年   7篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
  1965年   2篇
  1926年   1篇
  1912年   2篇
排序方式: 共有836条查询结果,搜索用时 31 毫秒
81.
The single crystal X-ray structures and the spectroscopic properties of complexes of monensic acid (C36H62O11·H2O) with toxic metal ions of Cd(II) and Hg(II) are discussed. The cadmium(II) complex (1) is of composition [Cd(C36H61O11)2(H2O)2] and crystallizes in the monoclinic system (space group P2(1), Z = 2) with a = 12.4090(8), b = 24.7688(16), c = 14.4358(11) Å, β = 91.979(7)°. Two ligand monoanions are bound in a bidentate coordination mode to Cd(II) via the carboxylate and the primary hydroxyl oxygens occupying the equatorial plane of the complex. The axial positions of the inner coordination sphere of Cd(II) are filled by two water molecules additionally engaged in intramolecular hydrogen bonds. The Hg(II) complex (2), [Hg(C36H60O11)(H2O)], crystallizes in the orthorhombic system (space group P2(1)2(1)2(1), Z = 4) with a = 12.7316(2), b = 16.4379(3), c = 18.7184(4) Å. The monensic acid reacts with Hg(II) in a tetradentate coordination manner via both oxygen atoms of the carboxylate function and oxygens of two hydroxyl groups. The twofold negative charge of the ligand is achieved by deprotonation of carboxylic and secondary hydroxyl groups located at the opposite ends of the molecule. Hg(II) is surrounded by five oxygen atoms in a distorted square pyramidal molecular geometry.
  相似文献   
82.
83.
84.
We consider the Euler equations describing nonlinear waves on the free surface of a two-dimensional inviscid, irrotational fluid layer of finite depth. For large surface tension, Bond number larger than 1/3, and Froude number close to 1, the system possesses a one-parameter family of small-amplitude, traveling solitary wave solutions. We show that these solitary waves are spectrally stable with respect to perturbations of finite wave-number. In particular, we exclude possible unstable eigenvalues of the linearization at the soliton in the long-wavelength regime, corresponding to small frequency, and unstable eigenvalues with finite but bounded frequency, arising from non-adiabatic interaction of the infinite-wavelength soliton with finite-wavelength perturbations. Received: 7 February 2001 / Accepted: 6 October 2001  相似文献   
85.
Host–guest inclusion complexes are abundant in molecular systems and of fundamental importance in living organisms. Realizing a colloidal analogue of a molecular dynamic inclusion complex is challenging because inorganic nanoparticles (NPs) with a well‐defined cavity and portal are difficult to synthesize in high yield and with good structural fidelity. Herein, a generic strategy towards the fabrication of dynamic 1:1 inclusion complexes of metal nanoparticles inside oxide nanocups with high yield (>70 %) and regiospecificity (>90 %) by means of a reactive double Janus nanoparticle intermediate is reported. Experimental evidence confirms that the inclusion complexes are formed by a kinetically controlled mechanism involving a delicate interplay between bipolar galvanic corrosion and alloying–dealloying oxidation. Release of the NP guest from the nanocups can be efficiently triggered by an external stimulus.  相似文献   
86.
Photosensitized reactions contribute to the development of skin cancer and are used in many applications. Photosensitizers can act through different mechanisms. It is currently accepted that if the photosensitizer generates singlet molecular oxygen (1O2) upon irradiation, the target molecule can undergo oxidation by this reactive oxygen species and the reaction needs dissolved O2 to proceed, therefore the reaction is classified as 1O2‐mediated oxidation (type II mechanism). However, this assumption is not always correct, and as an example, a study on the degradation of 2′‐deoxyguanosine 5′‐monophosphate photosensitized by pterin is presented. A general mechanism is proposed to explain how the degradation of biological targets, such as nucleotides, photosensitized by pterins, naturally occurring 1O2 photosensitizers, takes place through an electron‐transfer‐initiated process (type I mechanism), whereas the contribution of the 1O2‐mediated oxidation is almost negligible.  相似文献   
87.
88.
The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50 μg cm−2.  相似文献   
89.
In this paper we will argue that the categories of physical individuals and chemical stuff are not sufficient to face the chemical ontology if nanomaterials are taken into account. From a perspective that considers ontological questions and wonders which the items involved in science are, we will argue that the domain of nanoscience must be considered as populated by entities that are neither individuals, as those of physics, nor stuff, as those items of macro-chemistry. This discussion, in virtue of the analysis of the nature of nanomaterials, leads to propose a proper ontological category for nanoparticles: nanoindividuals. Nanomaterials are sorts of individuals, but they are different from physical individuals and from chemical stuff. We will also claim to contribute to the growing field of the philosophy of chemistry, especially regarding discussions that manifest not only epistemological but also ontological issues. In this scenario, the field on nanoscience is particularly challenging.  相似文献   
90.
We show that the quotient of two caloric functions which vanish on a portion of an \(H^{k+ \alpha }\) regular slit is \(H^{k+ \alpha }\) at the slit, for \(k \ge 2\). In the case \(k=1\), we show that the quotient is in \(H^{1+\alpha }\) if the slit is assumed to be space-time \(C^{1, \alpha }\) regular. This can be thought of as a parabolic analogue of a recent important result in De Silva and Savin (Boundary Harnack estimates in slit domains and applications to thin free boundary problems, 2014), whose ideas inspired us. As an application, we show that the free boundary near a regular point of the parabolic thin obstacle problem studied in Danielli et al. (Optimal regularity and the free boundary in the parabolic Signorini problem. Mem. Am. Math. Soc., 2013) with zero obstacle is \(C^{\infty }\) regular in space and time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号