首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001篇
  免费   21篇
  国内免费   11篇
化学   608篇
晶体学   28篇
力学   54篇
数学   204篇
物理学   139篇
  2023年   10篇
  2022年   27篇
  2021年   27篇
  2020年   24篇
  2019年   16篇
  2018年   24篇
  2017年   12篇
  2016年   41篇
  2015年   14篇
  2014年   38篇
  2013年   72篇
  2012年   50篇
  2011年   53篇
  2010年   41篇
  2009年   42篇
  2008年   59篇
  2007年   44篇
  2006年   46篇
  2005年   31篇
  2004年   30篇
  2003年   30篇
  2002年   38篇
  2001年   12篇
  2000年   18篇
  1999年   12篇
  1998年   12篇
  1997年   10篇
  1996年   15篇
  1995年   15篇
  1994年   9篇
  1993年   6篇
  1992年   12篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   8篇
  1987年   6篇
  1985年   12篇
  1984年   10篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   8篇
  1976年   7篇
  1975年   6篇
  1968年   3篇
  1916年   4篇
排序方式: 共有1033条查询结果,搜索用时 0 毫秒
21.
22.
Although membrane-bound dehydrogenases isolated from Gluconobacter sp. (mainly PQQ-dependent alcohol and fructose dehydrogenase) have been used for preparing diverse forms of bioelectronic interfaces for almost 2 decades, it is not an easy task to interpret an electrochemical behaviour correctly. Recent discoveries regarding redox properties of membrane-bound dehydrogenases along with extensive investigations of direct electron transfer (DET) or direct bioelectrocatalysis with these enzymes are summarized in this review. The main aim of this review is to draw general conclusions about possible electronic coupling paths of these enzymes on various interfaces via direct electron transfer or direct bioelectrocatalysis. A short overview of the metabolism and respiration chain in Gluconobacter relevant to interfacial electrochemistry is given. Biosensor devices based on DET or direct bioelectrocatalysis using membrane-bound dehydrogenases from Gluconobacter sp. are described briefly with the emphasis given on practical applications of preparing enzymatic biofuel cells. Moreover, interfacial electrochemistry of Gluconobacter oxydans related to the construction of microbial biofuel cells is also discussed.  相似文献   
23.
Two yellow bis-azo dyes containing anthracene and two azodiphenylether groups (BPA and BTA) were prepared, and an extensive investigation of their physical, thermal and biological properties was carried out. The chemical structure was confirmed by the FTIR spectra, while from the UV–Vis spectra, the quantum efficiency of the laser fluorescence at the 476.5 nm was determined to be 0.33 (BPA) and 0.50 (BTA). The possible transitions between the energy levels of the electrons of the chemical elements were established, identifying the energies and the electronic configurations of the levels of transition. Both crystals are anisotropic, the optical phenomenon of double refraction of polarized light (birefringence) taking place. Images of maximum illumination and extinction were recorded when the crystals of the bis-azo compounds rotated by 90° each, which confirms their birefringence. A morphologic study of the thin films deposited onto glass surfaces was performed, proving the good adhesion of both dyes. By thermal analysis and calorimetry, the melting temperatures were determined (~224–225 °C for both of them), as well as their decomposition pathways and thermal effects (enthalpy variations during undergoing processes); thus, good thermal stability was exhibited. The interaction of the two compounds with collagen in the suede was studied, as well as their antioxidant activity, advocating for good chemical stability and potential to be safely used as coloring agents in the food industry.  相似文献   
24.
25.
Summary.  11-(4H-1,2,4-Triazol-4-yl)-undecylmethacrylate (1), a new ligand for Fe(II) spin-crossover (SCO) complexes containing a polymerizable group, was synthesized and characterized. The complex [Fe·1 3](BF4)2 (2) was obtained by reaction of 1 with Fe(BF4)2·6H2O (molar ratio 1/Fe(II) = 3/1) in THF. Complex 2 showed a gradual spin-crossover between 80 and 230 K. The methacrylate units in the ligands of complex 2 could be oligomerized radically in solution (initiator: azoisobutyronitrile) without loss of the spin-crossover behaviour. Received May 30, 2000. Accepted December 10, 2000  相似文献   
26.
PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy.  相似文献   
27.
Journal of Thermal Analysis and Calorimetry - The food-colouring dye tartrazine is a significant additive and in the same time a biologically active material. Thermal behaviour of trisodium...  相似文献   
28.
29.
Racemic phosphocarnitine 3 has been synthesized starting from diethyl 3-chloro-2-oxopropanephosphonate 4 in three steps involving reduction of 4 to the corresponding 2-hydroxyphosphonate 5, conversion of the latter to phosphonic acid 6, and final reaction with trimethylamine, affording the trimethylammonium salt of 3. Baker's yeast reduction of 4 and enzymatic kinetic resolution of (+/-)-5 afforded the enantiomerically pure precursors of phosphocarnitine, (R)-(+)-5 and (S)-(-)-5, which were converted to (S)-(-)- and (R)-(+)-phosphocarnitine 3, respectively.  相似文献   
30.
This study is part of a research project aimed to find and optimize methods by which drug-excipient compatibility can be reliably and quickly assessed. The objective of the present study was to evaluate the compatibility of the acetylsalicylic acid (ASA), an non-steroidal anti-inflammatory drug, with pharmaceutical excipients of common use including diluents, binders, disintegrants, lubricants and solubilising agents. In order to investigate the possible interactions between ASA and eleven excipients differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry analysis completed by Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction were used for compatibility study. The DSC has proven to be, among the selected analytical techniques, the most sensitive and specific in assessing the compatibility. The samples, as physical mixtures, were prepared by mixing the analyte and excipients in a proportion of 1:1 (w:w). On the basis of thermal results (especially DSC), confirmed by FT-IR and X-ray analysis, a possible chemical interaction was found between the ASA with polyvinylpyrrolidone K30 (PVP) and magnesium stearate, respectively a possible physical interaction with colloidal silicon dioxide and stearic acid (Ac. St.).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号