首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14827篇
  免费   425篇
  国内免费   52篇
化学   11699篇
晶体学   84篇
力学   236篇
数学   1828篇
物理学   1457篇
  2023年   114篇
  2022年   478篇
  2021年   543篇
  2020年   308篇
  2019年   353篇
  2018年   274篇
  2017年   236篇
  2016年   483篇
  2015年   492篇
  2014年   475篇
  2013年   929篇
  2012年   970篇
  2011年   1090篇
  2010年   667篇
  2009年   647篇
  2008年   908篇
  2007年   876篇
  2006年   761篇
  2005年   676篇
  2004年   577篇
  2003年   480篇
  2002年   467篇
  2001年   190篇
  2000年   160篇
  1999年   126篇
  1998年   135篇
  1997年   111篇
  1996年   140篇
  1995年   97篇
  1994年   95篇
  1993年   97篇
  1992年   72篇
  1991年   86篇
  1990年   67篇
  1989年   80篇
  1988年   66篇
  1987年   49篇
  1986年   56篇
  1985年   67篇
  1984年   86篇
  1983年   47篇
  1982年   69篇
  1981年   64篇
  1980年   63篇
  1979年   50篇
  1978年   59篇
  1977年   42篇
  1976年   35篇
  1975年   26篇
  1963年   21篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.  相似文献   
952.
The conservation of paintings is fundamental to ensure that future generations will have access to the ideas of the grand masters who created these art pieces. Many factors, such as humidity, temperature, light, and pollutants, pose a risk to the conservation of paintings. To help with painting conservation, it is essential to be able to noninvasively study how these factors affect paintings and to develop methods to investigate their effects on painting degradation. Hence, the use of mobile nuclear magnetic resonance (NMR) as a method of investigation of paintings is gaining increased attention in the world of Heritage Science. In this mini-review, we discuss how this method was used to better understand the stratigraphy of paintings and the effect different factors have on the painting integrity, to analyze the different cleaning techniques suitable for painting conservation, and to show how mobile NMR can be used to identify forgeries. It is also important to keep in mind its limitations and build upon this information to optimize it to extend its applicability to the study of paintings and other precious objects of cultural heritage.  相似文献   
953.
The pyrolysis (1000 °C) of a liquid poly(vinylmethyl-co-methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000–1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the polymer-to-ceramic conversion based on TG experiments coupled with in-situ mass spectrometry and ex-situ solid-state NMR and FTIR spectroscopies of both the chemically modified polymer and the pyrolysis intermediates. The pyrolysis leads to X-ray amorphous materials with chemical bonding and ceramic yields controlled by the nature of the atmosphere. Then, the structural evolution of the amorphous network of ammonia-, nitrogen- and argon-treated ceramics has been studied above 1000 °C under nitrogen and argon by X-ray diffraction and electron microscopy. HRTEM images coupled with XRD confirm the formation of nanocomposites after annealing at 1400 °C. Their unique nanostructural feature appears to be the result of both the molecular origin of the materials and the nature of the atmosphere used during pyrolysis. Samples are composed of an amorphous Si-based ceramic matrix in which TiNxCy nanocrystals (x + y = 1) are homogeneously formed “in situ” in the matrix during the process and evolve toward fully crystallized compounds as TiN/Si3N4, TiNxCy (x + y = 1)/SiC and TiC/SiC nanocomposites after annealing to 1800 °C as a function of the atmosphere.  相似文献   
954.
Bioactive metabolites isolated from medicinal mushrooms (MM) used as supportive treatment in conventional oncology have recently gained interest. Acting as anticancer agents, they interfere with tumor cells and microenvironment (TME), disturbing cancer development/progression. Nonetheless, their action mechanisms still need to be elucidated. Recently, using a 4T1 triple-negative mouse BC model, we demonstrated that supplementation with Micotherapy U-Care, a MM blend, produced a striking reduction of lung metastases density/number, paralleled by decreased inflammation and oxidative stress both in TME and metastases, together with QoL amelioration. We hypothesized that these effects could be due to either a direct anticancer effect and/or to a secondary/indirect impact of Micotherapy U-Care on systemic inflammation/immunomodulation. To address this question, we presently focused on apoptosis/proliferation, investigating specific molecules, i.e., PARP1, p53, BAX, Bcl2, and PCNA, whose critical role in BC is well recognized. We revealed that Micotherapy U-Care is effective to influence balance between cell death and proliferation, which appeared strictly interconnected and inversely related (p53/Bax vs. Bcl2/PARP1/PCNA expression trends). MM blend displayed a direct effect, with different efficacy extent on cancer cells and TME, forcing tumor cells to apoptosis. Yet again, this study supports the potential of MM extracts, as adjuvant supplement in the TNBC management.  相似文献   
955.
Phytochemical investigations of Matricaria chamomilla L. (Asteraceae) stated the presence of several compounds with an established therapeutic and antioxidant potential. The chamomile non-enzymatic antioxidant system includes low molecular mass compounds, mainly polyphenols such as cinnamic, hydroxybenzoic and chlorogenic acids, flavonoids and coumarins. The objective of this work was to evaluate the role of the non-enzymatic antioxidant system after stimulation by ethylene in tetraploid chamomile plants. Seven days of ethylene treatment significantly increased the activity of phenylalanine ammonia-lyase, which influenced the biosynthesis of protective polyphenols in the first step of their biosynthetic pathway. Subsequently, considerable enhanced levels of phenolic metabolites with a substantial antioxidant effect (syringic, vanillic and caffeic acid, 1,5-dicaffeoylquinic acid, quercetin, luteolin, daphnin, and herniarin) were determined by HPLC-DAD-MS. The minimal information on the chlorogenic acids function in chamomile led to the isolation and identification of 5-O-feruloylquinic acid. It is accumulated during normal conditions, but after the excessive effect of abiotic stress, its level significantly decreases and levels of other caffeoylquinic acids enhance. Our results suggest that ethephon may act as a stimulant of the production of pharmaceutically important non-enzymatic antioxidants in chamomile leaves and thus, lead to an overall change in phytochemical content and therapeutic effects of chamomile plants, as well.  相似文献   
956.
Callus, suspension and bioreactor cultures of Verbena officinalis were established, and optimized for biomass growth and production of phenylpropanoid glycosides, phenolic acids, flavonoids and iridoids. All types of cultures were maintained on/in the Murashige and Skoog (MS) media with 1 mg/L BAP and 1 mg/L NAA. The inoculum sizes were optimized in callus and suspension cultures. Moreover, the growth of the culture in two different types of bioreactors—a balloon bioreactor (BB) and a stirred-tank bioreactor (STB) was tested. In methanolic extracts from biomass of all types of in vitro cultures the presence of the same metabolites—verbascoside, isoverbascoside, and six phenolic acids: protocatechuic, chlorogenic, vanillic, caffeic, ferulic and rosmarinic acids was confirmed and quantified by the HPLC-DAD method. In the extracts from lyophilized culture media, no metabolites were found. The main metabolites in biomass extracts were verbascoside and isoverbascoside. Their maximum amounts in g/100 g DW (dry weight) in the tested types of cultures were as follow: 7.25 and 0.61 (callus), 7.06 and 0.48 (suspension), 7.69 and 0.31 (BB), 9.18 and 0.34 (STB). The amounts of phenolic acids were many times lower, max. total content reached of 26.90, 50.72, 19.88, and 36.78 mg/100 g DW, respectively. The highest content of verbascoside and also a high content of isoverbascoside obtained in STB (stirred-tank bioreactor) were 5.3 and 7.8 times higher than in extracts from overground parts of the parent plant. In the extracts from parent plant two iridoids—verbenalin and hastatoside, were also abundant. All investigated biomass extracts and the extracts from parent plant showed the antiproliferative, antioxidant and antibacterial activities. The strongest activities were documented for the cultures maintained in STB. We propose extracts from in vitro cultured biomass of vervain, especially from STB, as a rich source of bioactive metabolites with antiproliferative, antioxidant and antibacterial properties.  相似文献   
957.
The porosity of lignocellulosic materials is a key feature for the enzymatic hydrolysis of the constituent polysaccharides, being affected by its drying and lignin content. Here we evaluated the influence of both parameters in the porosity of sugarcane bagasse, using raw and chlorite-delignified samples. A fraction of these samples was air dried at room temperature and the remainder one was kept wet. All the samples were subjected to porometry (solute exclusion technique), determination of water retention value and assessment of enzymatic saccharification of polysaccharides. Samples with higher lignin contents had lower porosities and exhibited worse enzymatic conversions of polysaccharides. Mild drying collapsed only the smaller pores, which already were inaccessible to enzymes, and therefore did not affect the efficiencies of saccharification. Our results show that the lignin content plays an important role in the porosity of the material and that its removal improves the enzymatic saccharification of the constituent polysaccharides.  相似文献   
958.
Fast and reliable prediction of bond orders in organic systems based upon experimentally measured quantities can be performed using electron density features at bond critical points (J Am Chem Soc 105:5061–5068, 1983; J Phys Org Chem 16:133–141, 2003; Acta Cryst B 61:418–428, 2005; Acta Cryst B 63:142–150, 2007). These features are outcomes of low-temperature high-resolution X-ray diffraction experiments. However, a time-consuming procedure of gaining these quantities makes the prediction limited. In the present work we have employed an empirical approach AlteQ (J Comput Aided Mol Des 22:489–505, 2008) for evaluation of electron density properties. This approach uses a simple exponential function derived from comparison of electron density, gained from high-resolution X-ray crystallography, and distance to atomic nucleus what allows calculating density distribution in time-saving manner and gives results which are very close to experimental ones. As input data AlteQ accepts atomic coordinates of isolated molecules or molecular ensembles (for instance, protein–protein complexes or complexes of small molecules with proteins, etc.). Using AlteQ characteristics we have developed regression models predicting Cioslowski–Mixon bond order (CMBO) indexes (J Am Chem Soc 113(42):4142–4145, 1991). The models are characterized by high correlation coefficients lying in the range from 0.844 to 0.988 dependently on the type of covalent bond, thereby providing a bonding quantification that is in reasonable agreement with that obtained by orbital theory. Comparative analysis of CMBOs approximated using topological properties of AlteQ and experimental electron densities has shown that the models can be used for fast determination of bond orders directly from X-ray crystallography data and confirmed that AlteQ characteristics can replace experimental ones with satisfactory extent of accuracy.  相似文献   
959.
A molecularly imprinted polymer (MIP) for the specific retention of neopterin has been developed. A set of 6 polymers was prepared by radical polymerization under different experimental condition using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinker, with the aim to understand their influence on the efficiency of the MIP. The performance of each MIP was tested in batch experiments via their binding capacity. The MIP prepared in the presence of nickel ions in dimethylsulfoxide-acetonitrile mixture (P4) exhibited the highest binding capacity for neopterin (260 μmol per gram of polymer). A selectivity study with two other pteridines demonstrated the polymer P4 also to possess the best selectivity.
Figure
A molecularly imprinted polymer for the specific retention of neopterin was developed. A set of 6 polymers was prepared under different experimental condition. The performance of each MIP was tested through their binding capacity. The MIP P4 prepared in the presence of nickel ions exhibited the highest binding capacity  相似文献   
960.
An effective approach to azepino-fused heterocycles is described. trans-1-Aryl-7,11b-dihydro-1H-azirino[1,2-a]dibenzo[c,f]azepines were synthesised via a domino sequence: isomerization of gem-dichloroaziridine-intramolecular Friedel-Crafts acylation of the tethered benzene ring catalysed by SnCl(4) and subsequent hydride induced intramolecular cyclization. Cycloaddition of dibenzazepinium ylides, generated by heating these aziridines, to activated C[double bond]C, C[triple bond]C dipolarophiles and fullerene C(60), leads to derivatives of dibenzo[c,f]pyrrolo[1,2-a]azepine. The reaction proceeds with complete stereoselectivity via cycloaddition of only W-ylide, which due to the high barrier does not undergo E,Z-isomerization under the reaction conditions. It was found that 2,3,9,13b-tetrahydro-1H-dibenzo[c,f]pyrrolo[1,2-a]azepine systems can exist in conformations of two types depending on the substituents at the pyrrolidine carbons in β-position with respect to nitrogen. Details of cycloaddition reactions and the conformational behavior of cycloadducts were studied by DFT calculations at the B3LYP/6-31G(d) level.  相似文献   
[首页] « 上一页 [91] [92] [93] [94] [95] 96 [97] [98] [99] [100] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号