首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15689篇
  免费   430篇
  国内免费   55篇
化学   12149篇
晶体学   98篇
力学   267篇
数学   1960篇
物理学   1700篇
  2023年   122篇
  2022年   512篇
  2021年   572篇
  2020年   332篇
  2019年   379篇
  2018年   301篇
  2017年   246篇
  2016年   501篇
  2015年   516篇
  2014年   485篇
  2013年   967篇
  2012年   1007篇
  2011年   1128篇
  2010年   688篇
  2009年   672篇
  2008年   952篇
  2007年   904篇
  2006年   776篇
  2005年   719篇
  2004年   605篇
  2003年   494篇
  2002年   496篇
  2001年   204篇
  2000年   174篇
  1999年   147篇
  1998年   144篇
  1997年   128篇
  1996年   154篇
  1995年   113篇
  1994年   115篇
  1993年   104篇
  1992年   90篇
  1991年   97篇
  1990年   71篇
  1989年   82篇
  1988年   84篇
  1987年   58篇
  1986年   63篇
  1985年   78篇
  1984年   98篇
  1983年   53篇
  1982年   93篇
  1981年   70篇
  1980年   70篇
  1979年   51篇
  1978年   61篇
  1977年   48篇
  1976年   41篇
  1975年   29篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Glypiation is a common posttranslational modification of eukaryotic proteins involving the attachment of a glycosylphosphatidylinositol (GPI) glycolipid. GPIs contain a conserved phosphoglycan that is modified in a cell‐ and tissue‐specific manner. GPI complexity suggests roles in biological processes and effects on the attached protein, but the difficulties to get homogeneous material have hindered studies. We disclose a one‐pot intein‐mediated ligation (OPL) to obtain GPI‐anchored proteins. The strategy enables the glypiation of folded and denatured proteins with a natural linkage to the glycolipid. Using the strategy, glypiated eGFP, Thy1, and the Plasmodium berghei protein MSP119 were prepared. Glypiation did not alter the structure of eGFP and MSP119 proteins in solution, but it induced a strong pro‐inflammatory response in vitro. The strategy provides access to glypiated proteins to elucidate the activity of this modification and for use as vaccine candidates against parasitic infections.  相似文献   
982.
The reduction of free radicals by bioactive membranes used for hemodialysis treatment is an important topic due to the constant rise of oxidative stress‐associated cardiovascular mortality by hemodialysis patients. Therefore, it is urgent to find an effective solution that helps to solve this problem. Polysulfone membranes enriched with α‐lipoic acid, α‐tocopherol, and with both components are fabricated by spin coating. The antioxidant properties of these membranes are evaluated in vitro by determining the lipid‐peroxidation level and the total antioxidant status of the blood plasma. The biocompatibility is assessed by quantifying the protein adsorption, platelet adhesion, complement activation, and hemolytic effect. All types of membranes show in vitro antioxidant activity and a trend to reduce oxidative stress in vivo; the best results show membranes prepared with a combination of both compounds and prove to be nonhemolytic and hemocompatible. Moreover, the membrane specific separation ability for the main waste products is not affected by antioxidants incorporation.  相似文献   
983.
984.
More than 300 different protein post‐translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub‐stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post‐translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross‐talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post‐translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post‐translational modifications are also briefly discussed.  相似文献   
985.
986.
We reconsider model II of Orban et al. (J. Chem. Phys. 1968, 49, 1778–1783), a two-dimensional lattice-gas system featuring a crystalline phase and two distinct fluid phases (liquid and vapor). In this system, a particle prevents other particles from occupying sites up to third neighbors on the square lattice, while attracting (with decreasing strength) particles sitting at fourth- or fifth-neighbor sites. To make the model more realistic, we assume a finite repulsion at third-neighbor distance, with the result that a second crystalline phase appears at higher pressures. However, the similarity with real-world substances is only partial: Upon closer inspection, the alleged liquid–vapor transition turns out to be a continuous (albeit sharp) crossover, even near the putative triple point. Closer to the standard picture is instead the freezing transition, as we show by computing the free-energy barrier relative to crystal nucleation from the “liquid”.  相似文献   
987.
The chemical diversity of the approximately 1,200 natural products isolated from red algae of the genus Laurencia, in combination with the wide range of their biological activities, have placed species of Laurencia in the spotlight of marine chemists’ attention for over 60 years. The chemical investigation of the organic (CH2Cl2/MeOH) extracts of Laurencia microcladia and Laurencia obtusa, both collected off the coasts of Tinos island in the Aegean Sea, resulted in the isolation of 32 secondary metabolites, including 23 C15 acetogenins (1–23), 7 sesquiterpenes (24–30) and 2 diterpenes (31 and 32). Among them, six new C15 acetogenins, namely 10-acetyl-sagonenyne (2), cis-sagonenyne (3), trans-thuwalenyne C (4), tinosallene A (11), tinosallene B (12) and obtusallene XI (17), were identified and their structures were elucidated by extensive analysis of their spectroscopic data. Compounds 1–3, 5–11, 13 and 15–32 were evaluated for their antibacterial activity against Staphylococcus aureus and Escherichia coli.  相似文献   
988.
Food spoilage makes foods undesirable and unacceptable for human use. The preservation of food is essential for human survival, and different techniques were initially used to limit the growth of spoiling microbes, e.g., drying, heating, salting, or fermentation. Water activity, temperature, redox potential, preservatives, and competitive microorganisms are the most important approaches used in the preservation of food products. Preservative agents are generally classified into antimicrobial, antioxidant, and anti-browning agents. On the other hand, artificial preservatives (sorbate, sulfite, or nitrite) may cause serious health hazards such as hypersensitivity, asthma, neurological damage, hyperactivity, and cancer. Thus, consumers prefer natural food preservatives to synthetic ones, as they are considered safer. Polyphenols have potential uses as biopreservatives in the food industry, because their antimicrobial and antioxidant activities can increase the storage life of food products. The antioxidant capacity of polyphenols is mainly due to the inhibition of free radical formation. Moreover, the antimicrobial activity of plants and herbs is mainly attributed to the presence of phenolic compounds. Thus, incorporation of botanical extracts rich in polyphenols in perishable foods can be considered since no pure polyphenolic compounds are authorized as food preservatives. However, individual polyphenols can be screened in this regard. In conclusion, this review highlights the use of phenolic compounds or botanical extracts rich in polyphenols as preservative agents with special reference to meat and dairy products.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号