首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   9篇
力学   15篇
物理学   1篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  1995年   1篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1977年   2篇
  1975年   1篇
  1968年   2篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
21.
A hydraulic jump is the rapid transition from a supercritical to subcritical free-surface flow. It is characterised by strong turbulence and air bubble entrainment. New air–water flow properties were measured in hydraulic jumps with partially developed inflow conditions. The data set together with the earlier data of Chanson (Air bubble entrainment in hydraulic jumps. Similitude and scale effects, 119 p, 2006) yielded similar experiments conducted with identical inflow Froude numbers Fr 1 = 5 and 8.5, but Reynolds numbers between 24,000 and 98,000. The comparative results showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. The present comparative analysis demonstrated quantitatively that dynamic similarity of two-phase flows in hydraulic jumps cannot be achieved with a Froude similitude. In experimental facilities with Reynolds numbers up to 105, some viscous scale effects were observed in terms of the rate of entrained air and air–water interfacial area.  相似文献   
22.
In high-velocity open channel flows, the measurements of air–water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air–water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8E+5 to 7.1E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air–water depth Y 90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95–0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.  相似文献   
23.
The hydraulic jump is the sudden transition from a high-velocity open channel flow regime to a subcritical flow motion. The flow properties may be solved using continuity and momentum considerations. In this review paper, recent advances in turbulent hydraulic jumps are developed: the non-breaking undular hydraulic jump, the positive surge and tidal bore, and the air bubble entrainment in hydraulic jumps with roller. The review paper demonstrates that the hydraulic jump is a fascinating turbulent flow motion and the present knowledge is insufficient, especially at the scales of environmental and geophysical flows.  相似文献   
24.
Unsymmetrical α -diketones have been obtained via cross coupling of acyltins with acyl halides under PdCl2(PPh3)2 catalysis while symmetrical α -diketones have been readily obtained via “in situ” formation of acyltins using hexabutylditin and acyl chlorides under similar experimental conditions.  相似文献   
25.
Free-surface fluctuations and turbulence in hydraulic jumps   总被引:1,自引:0,他引:1  
A hydraulic jump is the highly turbulent transition between a high-velocity impinging flow and a turbulent roller. The jump flow is characterised by some substantial air bubble entrainment, spray and splashing. In the present study, the free-surface fluctuations and air-water properties of the hydraulic jump roller were investigated physically for relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the mean free surface profile was well defined, and the time-averaged free-surface elevation corresponded to the upper free-surface, with the quantitative values being close to the equivalent clear-water depth. The turbulent fluctuation profiles exhibited a maximum in the first part of the hydraulic jump roller. The free-surface fluctuations presented some characteristic frequencies between 1.4 and 4 Hz. Some simultaneous free-surface measurements at a series of two closely located points yielded the free-surface length and time scales of free-surface fluctuations in terms of both longitudinal and transverse directions. The length scale data seemed to depend upon the inflow Froude number, while the time scale data showed no definite trend. Some simultaneous measurements of instantaneous void fraction and free-surface fluctuations exhibited different features depending upon the phase-detection probe sensor location in the different regions of the roller.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号