Compared to the biological world's rich chemistry for functionalizing carbon, enzymatic transformations of the heavier homologue silicon are rare. We report that a wild‐type cytochrome P450 monooxygenase (P450BM3 from Bacillus megaterium, CYP102A1) has promiscuous activity for oxidation of hydrosilanes to give silanols. Directed evolution was applied to enhance this non‐native activity and create a highly efficient catalyst for selective silane oxidation under mild conditions with oxygen as the terminal oxidant. The evolved enzyme leaves C?H bonds present in the silane substrates untouched, and this biotransformation does not lead to disiloxane formation, a common problem in silanol syntheses. Computational studies reveal that catalysis proceeds through hydrogen atom abstraction followed by radical rebound, as observed in the native C?H hydroxylation mechanism of the P450 enzyme. This enzymatic silane oxidation extends nature's impressive catalytic repertoire. 相似文献
This review is the sequel to the 2000 report on the recent advances in the chemistry of odorants and it summarizes the developments in fragrance chemistry over the past 20 years. Following the olfactory spectrum set out in that report, trendsetting so‐called captive odorants (patent‐protected ingredients unavailable to the market) are presented according to the main odor families: “fruity”, “marine”, “green”, “floral”, “spicy”, “woody”, “amber”, and “musky”. The design of odorants, their chemical synthesis, and their use in modern perfumery are illustrated with prominent examples. Featured are new fruity odorants that provide signature in the top note, as well as precursor technology. In the green domain, focus is on leafy notes and green pear. New benzodioxepines and benzodioxoles have modernized the marine family and required a revision of the existing olfactophore models. The replacement of Lilial and Lyral kept the industry busy in the floral domain with a plethora of new “muguets”. There was continued activity in the domain of rose odorants, especially in the area of rose ketones. Biotechnology became significant, for example, with Clearwood and Ambrofix, and the principal odorants of vetiver oil in the woody family have been found. Fourth and fifth families of musk odorants were also discovered and populated. Thus, new avenues for further explorations into fragrance chemistry have been opened. 相似文献
The design of covalent adaptable networks (CANs) relies on the ability to trigger the rearrangement of bonds within a polymer network. Simple activated alkynes are now used as versatile reversible cross‐linkers for thiols. The click‐like thiol–yne cross‐linking reaction readily enables network synthesis from polythiols through a double Michael addition with a reversible and tunable second addition step. The resulting thioacetal cross‐linking moieties are robust but dynamic linkages. A series of different activated alkynes have been synthesized and systematically probed for their ability to produce dynamic thioacetal linkages, both in kinetic studies of small molecule models, as well as in stress relaxation and creep measurements on thiol–yne‐based CANs. The results are further rationalized by DFT calculations, showing that the bond exchange rates can be significantly influenced by the choice of the activated alkyne cross‐linker. 相似文献
The electronic structure of endohedral metallofullerenes is rationalized by connecting the apparently independent orbital and topological rules that explain the stability of this family of fullerenes. The separation of the 12 pentagons of the fullerene, which is maximized in order to minimize the Coulomb repulsion, is found to be correlated with the orbital energies of the cage that accepts the electron transfer from the internal cluster. An explanation for the absence of non-IPR cages in large-size EMFs is also provided. 相似文献
The novel amphipilic conjugate of a calix[4]arene with four Gd–1,4,7,10‐ tetra(carboxymethyl)‐1,4,7,10‐tetraazacyclododecane (DOTA) chelates has potential as a magnetic resonance imaging contrast agent, both in its monomeric and in its micellar form. The system, illustrated here with its nuclear magnetic relaxation profile, shows good relaxivities, thanks to its high rigidity.