首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   19篇
  国内免费   5篇
化学   294篇
晶体学   1篇
力学   15篇
数学   39篇
物理学   60篇
  2023年   2篇
  2022年   4篇
  2021年   19篇
  2020年   22篇
  2019年   11篇
  2018年   19篇
  2017年   8篇
  2016年   18篇
  2015年   11篇
  2014年   15篇
  2013年   29篇
  2012年   22篇
  2011年   21篇
  2010年   17篇
  2009年   7篇
  2008年   26篇
  2007年   21篇
  2006年   18篇
  2005年   18篇
  2004年   11篇
  2003年   11篇
  2002年   15篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1978年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有409条查询结果,搜索用时 281 毫秒
21.
This study identified the isoindolone ring as a scaffold for novel agents against Trypanosoma brucei rhodesiense and explored the structure-activity relationships of various aromatic ring substitutions. The compounds were evaluated in an integrated in vitro screen. Eight compounds exhibited selective activity against T. b. rhodesiense (IC50<2.2 μm ) with no detectable side activity against T. cruzi and Leishmania infantum. Compound 20 showed low nanomolar potency against T. b. rhodesiense (IC50=40 nm ) and no toxicity against MRC-5 and PMM cell lines and may be regarded as a new lead template for agents against T. b. rhodesiense. The isoindolone-based compounds have the potential to progress into lead optimization in view of their highly selective in vitro potency, absence of cytotoxicity and acceptable metabolic stability. However, the solubility of the compounds represents a limiting factor that should be addressed to improve the physicochemical properties that are required to proceed further in the development of in vivo-active derivatives.  相似文献   
22.
The coordination ability of the [(ppy)Au(IPr)]2+ fragment [ppy = 2-phenylpyridine, IPr = 1,3-bis(2,6-di-isopropylphenyl)-imidazol-2-ylidene] towards different anionic and neutral X ligands (X = Cl, BF4, OTf, H2O, 2-butyne, 3-hexyne) commonly involved in the crucial pre-equilibrium step of the alkyne hydration reaction is computationally investigated to shed light on unexpected experimental observations on its catalytic activity. Experiment reveals that BF4 and OTf have very similar coordination ability towards [(ppy)Au(IPr)]2+ and slightly less than water, whereas the alkyne complex could not be observed in solution at least at the NMR sensitivity. Due to the steric hindrance/dispersion interaction balance between X and IPr, the [(ppy)Au(IPr)]2+ fragment is computationally found to be much less selective than a model [(ppy)Au(NHC)]2+ (NHC = 1,3-dimethylimidazol-2-ylidene) fragment towards the different ligands, in particular OTf and BF4, in agreement with experiment. Effect of the ancillary ligand substitution demonstrates that the coordination ability of Au(III) is quantitatively strongly affected by the nature of the ligands (even more than the net charge of the complex) and that all the investigated gold fragments coordinate to alkynes more strongly than H2O. Remarkably, a stabilization of the water-coordinating species with respect to the alkyne-coordinating one can only be achieved within a microsolvation model, which reconciles theory with experiment. All the results reported here suggest that both the Au(III) fragment coordination ability and its proper computational modelling in the experimental conditions are fundamental issues for the design of efficient catalysts.  相似文献   
23.
The use of lipases in industrial processes can result in products with high levels of purity and at the same time reduce pollutant generation and improve both selectivity and yields. In this work, lipase from Thermomyces lanuginosus was immobilized using two different techniques. The first involves the hydrolysis/polycondensation of a silica precursor (tetramethoxysilane (TMOS)) at neutral pH and ambient temperature, and the second one uses tetraethoxysilane (TEOS) as the silica precursor, involving the hydrolysis and polycondensation of the alkoxide in appropriate solvents. After immobilization, the enzymatic preparations were dried using the aerogel and xerogel techniques and then characterized in terms of their hydrolytic activities using a titrimetric method with olive oil and by the formation of 2-phenylethyl acetate in a transesterification reaction. The morphological properties of the materials were characterized using scanning electron microscopy, measurements of the surface area and pore size and volume, thermogravimetric analysis, and exploratory differential calorimetry. The results of the work indicate that the use of different silica precursors (TEOS or TMOS) and different drying techniques (aerogel or xerogel) can significantly affect the properties of the resulting biocatalyst. Drying with supercritical CO2 provided higher enzymatic activities and pore sizes and was therefore preferable to drying, using the xerogel technique. Thermogravimetric analysis and differential scanning calorimetry analyses revealed differences in behavior between the two biocatalyst preparations due to the compounds present.  相似文献   
24.
25.
Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin-coating deposition method, and it was found that 6-layer deposition of glycine-FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine-FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine-FeOOH nanoparticle is suitable and environmentally-friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation.  相似文献   
26.
Headspace gas chromatography is frequently used for aroma profiling thanks to its ability to naturally exploit the volatility of aroma compounds, and also to provide chemical information on sample composition. Its main advantages rely on simplicity, no use of solvent, amenability to automation, and the cleanliness of the extract. In the present contribution, the most effective sampling (dynamic extraction), separation (multidimensional gas chromatography), and detection (mass spectrometry) techniques for untargeted analysis are exploited in combination, showing their potential in unraveling aroma profiles in fruit beers. To complete the overall analytical process, a neat workflow for data analysis is discussed and used for the successful characterization and identification of five different beer flavors (berries, cherry, banana, apple, and peach). From the technical viewpoint, the coupling of purge‐and‐trap, comprehensive two‐dimensional gas chromatography, and mass spectrometry makes the global methodology unique, and it is for the first time discussed. A (low‐)flow modulation approach allowed for the full transfer into the second dimension with mass‐spectrometry compatible flow (< 7 mL/min), avoiding the need of splitting before detection and making the overall method sensitive (1.2–5.2‐fold higher signal to noise ratio compared to unmodulated gas chromatography conditions) and selective.  相似文献   
27.
Coffee, one of the most popular beverages in the world, attracts consumers by its rich aroma and the stimulating effect of caffeine. Increasing consumers prefer decaffeinated coffee to regular coffee due to health concerns. There are some main decaffeination methods commonly used by commercial coffee producers for decades. However, a certain amount of the aroma precursors can be removed together with caffeine, which could cause a thin taste of decaffeinated coffee. To understand the difference between regular and decaffeinated coffee from the volatile composition point of view, headspace solid-phase microextraction two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS) was employed to examine the headspace volatiles of eight pairs of regular and decaffeinated coffees in this study. Using the key aroma-related volatiles, decaffeinated coffee was significantly separated from regular coffee by principal component analysis (PCA). Using feature-selection tools (univariate analysis: t-test and multivariate analysis: partial least squares-discriminant analysis (PLS-DA)), a group of pyrazines was observed to be significantly different between regular coffee and decaffeinated coffee. Pyrazines were more enriched in the regular coffee, which was due to the reduction of sucrose during the decaffeination process. The reduction of pyrazines led to a lack of nutty, roasted, chocolate, earthy, and musty aroma in the decaffeinated coffee. For the non-targeted analysis, the random forest (RF) classification algorithm was used to select the most important features that could enable a distinct classification between the two coffee types. In total, 20 discriminatory features were identified. The results suggested that pyrazine-derived compounds were a strong marker for the regular coffee group whereas furan-derived compounds were a strong marker for the decaffeinated coffee samples.  相似文献   
28.
Amyloglucosidase from Novo (Copenhagen, Denmark) was immobilized in controlled pore silica particles with the silane-glutaraldehyde covalent method. Thermal stability of the free and immobilized enzyme (IE) was determined with 30% (w/v) α-amylase liquefied cassava starch, pH 4.5, temperatures from 35 to 75°C. Free amyloglucosidase maintained its activity practically constant for 240 min and temperatures up to 50°C. The IE has shown higher stability retaining its activity for the same period up to 60°C. Half-life for free enzyme was 20.6, 6.44, 2.07, 0.69, and 0.24 h for 55, 60, 65, 70, and 75°C, respectively, whereas the IE at the same temperatures had half-lives of 116.4, 30.88, 8.52, 2.44, and 0.73 h. The energy of thermal deactivation was thus 50.6 and 57.6 kcal/mol, respectively for the free and IE, confirming stabilization by immobilization.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号