首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80889篇
  免费   659篇
  国内免费   657篇
化学   26389篇
晶体学   839篇
力学   6859篇
综合类   15篇
数学   32221篇
物理学   15882篇
  2022年   69篇
  2021年   107篇
  2020年   99篇
  2019年   123篇
  2018年   10503篇
  2017年   10318篇
  2016年   6184篇
  2015年   998篇
  2014年   462篇
  2013年   538篇
  2012年   4039篇
  2011年   10723篇
  2010年   5792篇
  2009年   6212篇
  2008年   6789篇
  2007年   8908篇
  2006年   362篇
  2005年   1441篇
  2004年   1619篇
  2003年   2058篇
  2002年   1104篇
  2001年   305篇
  2000年   329篇
  1999年   196篇
  1998年   230篇
  1997年   168篇
  1996年   220篇
  1995年   142篇
  1994年   103篇
  1993年   107篇
  1992年   71篇
  1991年   81篇
  1990年   65篇
  1989年   69篇
  1988年   63篇
  1987年   69篇
  1986年   64篇
  1985年   57篇
  1984年   50篇
  1983年   41篇
  1982年   46篇
  1981年   41篇
  1980年   71篇
  1979年   48篇
  1978年   57篇
  1977年   66篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator–ferromagnet transition by tuning an external electric field.  相似文献   
992.
Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.  相似文献   
993.
Plasmonic waveguides and conventional dielectric waveguides have favorable characteristics in photonic integrated circuits. Typically, plasmonic waveguides can provide subwavelength mode confinement, as shown by their small mode area, whereas conventional dielectric waveguides guide light with low loss, as shown by their long propagation length. However, the simultaneous achievement of subwavelength mode confinement and low-loss propagation remains limited. In this paper, we propose a novel design of an alldielectric bowtie waveguide, which simultaneously exhibits both subwavelength mode confinement and theoretically lossless propagation. Contrary to traditional dielectric waveguides, where the guidance of light is based on total internal reflection, the principle of the all-dielectric bowtie waveguide is based on the combined use of the conservation of the normal component of the electric displacement and the tangential component of the electric field, such that it can achieve a mode area comparable to its plasmonic counterparts. The mode distribution in the all-dielectric bowtie waveguide can be precisely controlled by manipulating the geometric design. Our work shows that it is possible to achieve extreme light confinement by using dielectric instead of lossy metals.  相似文献   
994.
995.
C/FeOF/FeF3 nanocomposite was synthesized by a facile in situ partial oxidation method. High-resolution transmission electron microscopy (HR-TEM) showed a special texture comprised of interpenetrating nanodomains of FeOF and FeF3. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements revealed that the introduction of nanodomain FeOF enhanced both the electronic and ionic conductivity of the composite material. Therefore, the improvement of electron and lithium-ion dynamics resulted in the significant enhancement of the electrochemical performances of the material at ambient temperature. At a current density of 20 mA g?1 within potential range 1.5–4.5 V, the specific capacities of the first ten circles were maintained at about 400 mAh g?1 . This material also exhibited excellent cycling capacity retention capability especially for high C rates. When the current density further increased to 100 and 200 mA g?1, a steady capacity of 80 and 60 mAh g?1 was observed, respectively. Furthermore, nearly no capacity loss was observed for the followed cycles. The discharge platforms based on intercalation and conversion reaction were also heightened by about 0.4 V, which increased the contribution of high voltage capacities. Compared to C/FeF3, C/FeOF/FeF3 is showing more of capacitive behavior, which also contributes to the high specific capacity delivered and is believed to be closely related to the enlarged nanodomain interfaces between two electrochemical active materials. An expansion-cracking-oxidation mechanism was proposed to explain the formation of this interpenetrating nanodomains of FeOF and FeF3.  相似文献   
996.
Morphologies and structures of M-N-C catalysts are the key factor for controlling the formation of catalytic active sites, which are directly connected with the electrocatalytic activities for oxygen reduction reaction (ORR). By combining different metal sources (metal-free, Co, and Fe) with polyaniline (PANI) and para-phenylenediamine functionalized GO (PGO), morphologies and structures are tuned to accelerate the ORR activity. Compared with metal-free catalyst, metal-containing catalysts show better ORR performance because of the possible synergistic effect between metal and N atoms. In particular, the improved ORR activity of Fe-PANI-PGO catalyst is obtained by rotating disc electrode (RDE) at 1600 rpm in 0.1 M KOH electrolyte. The Fe-PANI-PGO electrocatalyst has the enhanced half-wave potential of 0.89 V and the high stability with only decreasing 7 mV of half-wave potential after 10,000 cycles, implying increased number and strengthened structures of active sites. Combined with various means of characterization, advantageous morphologies and structures including large electrochemically active surface area, high graphitization degree, and thick carbon structure with more pyridinic nitrogen boned with metal atoms can greatly enhance the ORR activity and stability of the catalyst.
Graphical abstract
  相似文献   
997.
Lithium/sulfur (Li/S) batteries have a high theoretical specific capacity of 1672 mAh g?1. However, the insulation of the elemental sulfur and polysulfides dissolution could result in poor cycling performance of Li/S batteries, thus restricting the industrialization process. Here, we prepared sulfur-based composite by thermal treatment. The modified acetylene black (H-AB) was used as a carrier to fix sulfur. The H-AB could interact with polysulfides and reduce the dissolution of polysulfides in the electrolyte. Nonetheless, the conductivity of H-AB relatively reduced. So the conductivity of the sulfur electrode would be improved by the addition of the conductive agent (AB). In this paper, the different content of conductive agent (AB) in the sulfur electrode was studied. The electrochemical tests indicate that the discharge capacity of the sulfur electrode can be increased by increasing the conductive agent (AB) content. The H-AB@S composite electrode with 30 wt.% conductive agent has the best cycle property. The discharge capacity still remains at 563 mAh g?1 after 100 cycles at 0.1 C, which is 71% retention of the highest discharge capacity.  相似文献   
998.
The lithiated transition metal oxide precursor (LNCMO) with typical α-NaFeO2 structure and imperfect crystallinity, obtained from a hydrothermal process, was pretreated at 500 °C and then subjected to sintering at 800–920 °C to synthesize the ternary layered LiNi0.5Co0.2Mn0.3O2 (NCM523). X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge testing were used for investigating the effect of the high-temperature crystallization on the properties of the NCM523 cathode materials. The results show that the materials heated at 880–900 °C possess superior cation ordering, perfect crystallinity, and excellent electrochemical performances, among which the material heated at 900 °C delivers better performances, with the initial discharge capacity of 152.6 mAh g?1 at 0.5 C over 3.0 to 4.3 V and the capacity retention of 95.5% after 50 cycles. Furthermore, the effect of the high-temperature crystallization on the Li+ diffusion coefficient, potential polarization, and electrochemical resistance are discussed.  相似文献   
999.
Electrospraying-based synthesis of NiCo2O4 (NCO-ES) nanoparticles that exhibit long cycle life and high rate capability is reported. The results are compared with a conventionally prepared NiCo2O4 sample by direct annealing (NCO-DA). The structure and morphology of NCO-ES and NCO-DA nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy to confirm the size, morphology, structure, and surface chemistry of the as-prepared samples. Electrochemical testing established that the NCO-ES sample displayed enhanced Li-ion storage performance. The NCO-ES delivered a discharge capacity of almost 370 mAh/g at the end of 50 cycles at 1C rate (890 mA/g) while only 180 mAh/g was retained for the NCO-DA sample at the same condition. At a high rate of 5C (4450 mA/g), NCO-ES electrodes delivered a stabilized specific capacity of 225 mAh/g with almost 100% Coulombic efficiency over 1000 cycles. Its rate capability and cycle life were found to be superior to NCO-DA electrodes. The nanoscale grain boundaries in the NCO-ES sample enhanced the lithium-ion diffusion and enabled high rate capability. The impedance analysis at different stages of lithiation/delithiation indicates a lower impedance and better kinetics as one of the reasons for better performance of the NCO-ES sample.  相似文献   
1000.
Fluoroethylene carbonate (FEC) is investigated as the electrolyte additive to improve the electrochemical performance of high voltage LiNi0.6Co0.2Mn0.2O2 cathode material. Compared to LiNi0.6Co0.2Mn0.2O2/Li cells in blank electrolyte, the capacity retention of the cells with 5 wt% FEC in electrolytes after 80 times charge-discharge cycle between 3.0 and 4.5 V significantly improve from 82.0 to 89.7%. Besides, the capacity of LiNi0.6Co0.2Mn0.2O2/Li only obtains 12.6 mAh g?1 at 5 C in base electrolyte, while the 5 wt% FEC in electrolyte can reach a high capacity of 71.3 mAh g?1 at the same rate. The oxidative stability of the electrolyte with 5 wt% FEC is evaluated by linear sweep voltammetry and potentiostatic data. The LSV results show that the oxidation potential of the electrolytes with FEC is higher than 4.5 V vs. Li/Li+, while the oxidation peaks begin to appear near 4.3 V in the electrolyte without FEC. In addition, the effect of FEC on surface of LiNi0.6Co0.2Mn0.2O2 is elucidated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The analysis result indicates that FEC facilitates the formation of a more stable surface film on the LiNi0.6Co0.2Mn0.2O2 cathode. The electrochemical impedance spectroscopy (EIS) result evidences that the stable surface film could improve cathode electrolyte interfacial resistance. These results demonstrate that the FEC can apply as an additive for 4.5 V high voltage electrolyte system in LiNi0.6Co0.2Mn0.2O2/Li cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号