首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   5篇
化学   54篇
力学   2篇
数学   4篇
物理学   49篇
  2024年   1篇
  2023年   1篇
  2022年   12篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   9篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1970年   2篇
排序方式: 共有109条查询结果,搜索用时 2 毫秒
71.
Nature provides a variety of drugs and medicinal agents derived from plants. This study was conducted to determine antimicrobial, antioxidant and cytotoxic activities of extracts of Melia azedarach bark with methanol/water (9:1 v/v), chloroform, butanol, hexane, water and ethyl acetate. For the determination of the antimicrobial activities, the agar well diffusion method was employed. Cytotoxicity was studied by brine shrimp lethality assay; antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl. The chloroform extract was active against Enterobacter aerogenes and Proteus mirabilis, the ethyl acetate extract had highest antibacterial spectrum against Pseudomonas aeruginosa, the n-hexane extract had highest inhibition against E. aerogenes, the aqueous extract showed highest activities against P. mirabilis, the butanol fraction showed highest activities against E. aerogenes and the methanolic extract was highly active against P. mirabilis.  相似文献   
72.
We demonstrate the synthesis, characterization and application of pure and tin (Sn) doped zinc oxide (ZnO) nanostructures with unique optical properties. Pencil-shaped nanorods were synthesized using a mixture of pure ZnO and carbon as starting material. The growth mechanism of these nanorods is discussed in detail. Sn-doped ultra-long belt-shape ZnO structures show many different colors in a single belt under fluorescent light in an optical microscope. These different colors are attributed to the presence of different defects in the ZnO lattice. X-ray diffraction and UV–VIS spectroscopy results are in good agreement with each other. A major application for these belts is likely to be in a single-particle sensor. A single belt based UV sensor is also fabricated and the results suggest that these photoconducting belts can serve as highly sensitive UV-light detectors.  相似文献   
73.
Alzheimer’s disease is an emerging health disorder associated with cognitive decline and memory loss. In this study, six curcumin analogs (1a–1f) were synthesized and screened for in vitro cholinesterase inhibitory potential. On the basis of promising results, they were further investigated for in vivo analysis using elevated plus maze (EPM), Y-maze, and novel object recognition (NOR) behavioral models. The binding mode of the synthesized compounds with the active sites of cholinesterases, and the involvement of the cholinergic system in brain hippocampus was determined. The synthesized curcumin analog 1d (p < 0.001, n = 6), and 1c (p < 0.01, n = 6) showed promising results by decreasing retention time in EPM, significantly increasing % SAP in Y-maze, while significantly (p < 0.001) enhancing the % discrimination index (DI) and the time exploring the novel objects in NORT mice behavioral models. A molecular docking study using MOE software was used for validation of the inhibition of cholinesterase(s). It has been indicated from the current research work that the synthesized curcumin analogs enhanced memory functions in mice models and could be used as valuable therapeutic molecules against neurodegenerative disorders. To determine their exact mechanism of action, further studies are suggested.  相似文献   
74.
Efficient method for the total synthesis of egonol in five steps via Sonogashira coupling reaction is reported.  相似文献   
75.
Achieving superfast water transport by using synthetically designed molecular artifacts, which exclude salts and protons, is a challenging task in separation science today, as it requires the concomitant presence of a proper water-binding site and necessary selectivity filter for transporting water. Here, we demonstrate the water channel behavior of two configurationally different peptide diol isomers that mimic the natural water channel system, i.e., aquaporins. The solid-state morphology studies showed the formation of a self-assembled aggregated structure, and X-ray crystal structure analysis confirmed the formation of a nanotubular assembly that comprises two distinct water channels. The water permeabilities of all six compounds were evaluated and are found to transport water by excluding salts and protons with a water permeability rate of 5.05 × 108 water molecules per s per channel, which is around one order of magnitude less than the water permeability rate of aquaporins. MD simulation studies showed that the system forms a stable water channel inside the bilayer membrane under ambient conditions, with a 2 × 8 layered assembly, and efficiently transports water molecules by forming two distinct water arrays within the channel.

A 1,2-diol-linked peptide forms a self-assembled channel in the lipid bilayer membrane. The channel allows rapid transport of water by excluding proton and salts.  相似文献   
76.
77.
CR-39 detectors have been exposed to a 5.9-MeV antiproton beam using the low energy antiproton ring (LEAR) facility at CERN. At this energy, tracks of antiprotons appear in a CR-39 detector after 135 rain of etching in 6M NaOH at 70℃. Fluence of the antiproton beam has been determined using track density. We have also found tracks in the etched CR-39 detector at different depths (250-500μm). These tracks have resulted from the annihilation of antiprotons with the constituents (H, C and O) of the CR-39 detector. The goal of the experiment is to develop a simple and low-cost method to study properties of antiparticles and those formed after annihilation of these particles with the target matter.  相似文献   
78.
A simple and more sensitive spectrophotometric method is developed for determination of thorium using thorin as a chromogenic reagent in the presence of cetylpyridinium chloride (CPC) in perchloric acid. The reaction was instantaneous and complex was found stable for 168 h. A significant bathochromic shift was noted in the presence of CPC. The determination range was enhanced from 25 to 30 μg mL?1 with molar absorptivity of 2.95 × 104 L mol?1 cm?1 at 25 ± 5 °C. Sandell’s sensitivity was calculated to be 6.8 ng cm?2 at 581 nm. Relative standard deviation was reduced from 4.25 to 2.5. The interference of Ni2+, Mn2+, Sn4+, phosphate, EDTA, sulphate and tartrate has been reduced significantly in the presence of surfactant. The validity of the proposed method was tested by determining thorium in Certified Reference Materials.  相似文献   
79.
Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography–mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates  相似文献   
80.
Development of new treatment strategies and chemotherapeutic agents is urgently needed to combat the growing multidrug resistant species of Candida. In this direction, a new series of Cu (II), Co (II), Ni (II) and Zn (II) heteroleptic complexes were synthesized, characterized and evaluated for antifungal activity. Based on spectral characterization and physical measurements, an octahedral geometry was assigned to [Co(L1)(L2)ClH2O] ( C2 ), [Ni(L1)(L2)ClH2O] ( C3 ), [Zn(L1)(L2)ClH2O] ( C4 ) complexes, while a distorted octahedral geometry was assigned to [Cu(L1)(L2)ClH2O] ( C1 ) complex. All the synthesized compounds were tested for antifungal activity against 11 Candida albicans isolates, including fluconazole (FLC)‐resistant isolates, by determining minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations (MFC), following CLSI guidelines. The mechanism of their antifungal activity was assessed by studying their effect on the plasma membrane using flow cytometry and quantifying the ergosterol contents. All the test compounds showed varying levels of antifungal activity. Both the ligands showed moderate antifungal activity with a median MIC value of 100 μg/mL with no fungicidal activity. Compound C3 was the most potent compound with median MIC and MFC values of 0.10 and 1.60 μg/mL, respectively. Flow cytometry analysis revealed that these compounds at MFC values disrupt the cell membrane, resulting in propidium iodide entering the cells. These compounds also reduced a considerable amount of ergosterol content after treating the cells with MIC and sub‐MIC values. This study indicates that these compounds have high antifungal activity against C. albicans, and have the potential to be developed as novel antifungal drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号