首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
  国内免费   1篇
化学   25篇
力学   2篇
数学   11篇
物理学   6篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
21.
Polymeric stabilizers are used in a broad range of processes and products, from pharmaceuticals and engine lubricants to formulated foods and shampoos. In rigid particulate systems, the stabilization mechanism is attributed to the repulsive force that arises from the compression of the polymer coating or "steric brush" on the interacting particles. This mechanism has dictated polymer design and selection for more than thirty years. Here we show, through direct measurement of the repulsive interactions between immobilized drops with adsorbed polymers layers in aqueous electrolyte solutions, that the interaction is a result of both steric stabilization and drop deformation. Drops driven together at slow collision speeds, where hydrodynamic drainage effects are negligible, show a strong dependence on drop deformation instead of brush compression. When drops are driven together at higher collision speeds where hydrodynamic drainage affects the interaction force, simple continuum modeling suggests that the film drainage is sensitive to flow through the polymer brush. These data suggest, for drop sizes where drop deformation is appreciable, that the stability of emulsion drops is less sensitive to the molecular weight or size of the adsorbed polymer layer than for rigid particulate systems.  相似文献   
22.
A series of cerium(iv) mixed-ligand guanidinate–amide complexes, {[(Me3Si)2NC(NiPr)2]xCeIV[N(SiMe3)2]3−x}+ (x = 0–3), was prepared by chemical oxidation of the corresponding cerium(iii) complexes, where x = 1 and 2 represent novel complexes. The Ce(iv) complexes exhibited a range of intense colors, including red, black, cyan, and green. Notably, increasing the number of the guanidinate ligands from zero to three resulted in significant redshift of the absorption bands from 503 nm (2.48 eV) to 785 nm (1.58 eV) in THF. X-ray absorption near edge structure (XANES) spectra indicated increasing f occupancy (nf) with more guanidinate ligands, and revealed the multiconfigurational ground states for all Ce(iv) complexes. Cyclic voltammetry experiments demonstrated less stabilization of the Ce(iv) oxidation state with more guanidinate ligands. Moreover, the Ce(iv) tris(guanidinate) complex exhibited temperature independent paramagnetism (TIP) arising from the small energy gap between the ground- and excited states with considerable magnetic moments. Computational analysis suggested that the origin of the low energy absorption bands was a charge transfer between guanidinate π orbitals that were close in energy to the unoccupied Ce 4f orbitals. However, the incorporation of sterically hindered guanidinate ligands inhibited optimal overlaps between Ce 5d and ligand N 2p orbitals. As a result, there was an overall decrease of ligand-to-metal donation and a less stabilized Ce(iv) oxidation state, while at the same time, more of the donated electron density ended up in the 4f shell. The results indicate that incorporating guanidinate ligands into Ce(iv) complexes gives rise to intense charge transfer bands and noteworthy electronic structures, providing insights into the stabilization of tetravalent lanthanide oxidation states.

A series of cerium(iv) mixed-ligand guanidinate-amide complexes, {[(Me3Si)2NC(NiPr)2]xCeIV[N(SiMe3)2]3−x}+ (x = 0−3), was prepared by chemical oxidation and studied spectroscopically and computationally, revealing trends in 4f/5d orbital occupancies.  相似文献   
23.
Abstract

The synthesis and reactivity of benzyl trifluoromethanesulfinates have been investigated. These esters are easily and almost quantitatively obtained by selective oxidation of the corresponding sulfenates. A study of their behavior has revealed some unique features. In sharp contrast to benzyl arenesulfinates, which undergo ethanolysis with complete sulfur-oxygen bond fission, the corresponding trifluorornethanesulfinates undergo ethanolysis with exclusive carbon-oxygen bond fission, and with a rate enhancement by a factor of 6 powers of ten. The unusual high reactivity of these esters, comparable to that of the corresponding tosylates, is discussed. A kinetic study of the solvent and substituent effects on the rate of solvolysis has been performed. Also in contrast with benzyl arenesulfinates, these esters undergo facile rearrangement to sulfone on heating in polar nonhydroxylic solvents such as acetonitrile, in high yields. The mechanisms of solvolysis and rearrangement are discussed.  相似文献   
24.
The separation of rare‐earth ions from one another is challenging due to their chemical and physical similarities. Nearly all rare‐earth separations rely upon small changes in ionic radii to direct speciation or reactivity. Herein, we show that the intrinsic magnetic properties of the rare‐earth ions impact the separations of light/heavy and selected heavy/heavy binary mixtures. Using TriNOx3? ([{(2‐tBuNO)C6H4CH2}3N]3?) rare‐earth complexes, we efficiently and selectively crystallized heavy rare earths (Tb–Yb) from a mixture with light rare earths (La and Nd) in the presence of an external Fe14Nd2B magnet, concomitant with the introduction of a concentration gradient (decrease in temperature). The optimal separation was observed for an equimolar mixture of La:Dy, which gave an enrichment factor of EFLa:Dy=297±31 for the solid fraction, compared to EFLa:Dy=159±22 in the absence of the field, and achieving a 99.7 % pure Dy sample in one step. These results indicate that the application of a magnetic field can improve performance in a molecular separation system for paramagnetic rare‐earth cations.  相似文献   
25.
Let (X,d X ) be an n-point metric space. We show that there exists a distribution over non-contractive embeddings into trees f: XT such that for every xX, where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, including fault-tolerant versions of k-median and facility location.  相似文献   
26.
27.
It is shown that for every ε∈(0,1), every compact metric space (X,d) has a compact subset S?X that embeds into an ultrametric space with distortion O(1/ε), and $$\dim_H(S)\geqslant (1-\varepsilon)\dim_H(X),$$ where dim H (?) denotes Hausdorff dimension. The above O(1/ε) distortion estimate is shown to be sharp via a construction based on sequences of expander graphs.  相似文献   
28.
29.
This paper is devoted to the study of quotients of finite metric spaces. The basic type of question we ask is: Given a finite metric space M and α?1, what is the largest quotient of (a subset of) M which well embeds into Hilbert space. We obtain asymptotically tight bounds for these questions, and prove that they exhibit phase transitions. We also study the analogous problem for embeddings into ?p, and the particular case of the hypercube.  相似文献   
30.
Despite their connection to ammonia synthesis, little is known about the ability of iron‐bound, bridging nitrides to form N?H bonds. Herein we report a linear diiron bridging nitride complex supported by a redox‐active macrocycle. The unique ability of the ligand scaffold to adapt to the geometric preference of the bridging species was found to facilitate the formation of N?H bonds via proton‐coupled electron transfer to generate a μ‐amide product. The structurally analogous μ‐silyl‐ and μ‐borylamide complexes were shown to form from the net insertion of the nitride into the E?H bonds (E=B, Si). Protonation of the parent bridging amide produced ammonia in high yield, and treatment of the nitride with PhSH was found to liberate NH3 in high yield through a reaction that engages the redox‐activity of the ligand during PCET.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号