首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15776篇
  免费   2794篇
  国内免费   1834篇
化学   11325篇
晶体学   163篇
力学   1137篇
综合类   64篇
数学   1658篇
物理学   6057篇
  2024年   37篇
  2023年   339篇
  2022年   589篇
  2021年   549篇
  2020年   630篇
  2019年   586篇
  2018年   530篇
  2017年   483篇
  2016年   837篇
  2015年   729篇
  2014年   919篇
  2013年   1130篇
  2012年   1459篇
  2011年   1444篇
  2010年   982篇
  2009年   920篇
  2008年   1070篇
  2007年   944篇
  2006年   855篇
  2005年   761篇
  2004年   530篇
  2003年   434篇
  2002年   423篇
  2001年   348篇
  2000年   305篇
  1999年   324篇
  1998年   268篇
  1997年   239篇
  1996年   270篇
  1995年   266篇
  1994年   188篇
  1993年   147篇
  1992年   152篇
  1991年   145篇
  1990年   125篇
  1989年   101篇
  1988年   85篇
  1987年   67篇
  1986年   50篇
  1985年   41篇
  1984年   30篇
  1983年   25篇
  1982年   14篇
  1981年   16篇
  1980年   9篇
  1978年   2篇
  1972年   1篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
911.
ABSTRACT

The stable configurations, electronic structures and catalytic activities of single-atom metal catalyst anchored silicon-doped graphene sheets (3Si-graphene-M, M?=?Ni and Pd) are investigated by using density functional theory calculations. Firstly, the adsorption stability and electronic property of different gas reactants (O2, CO, 2CO, CO/O2) on 3Si-graphene-M substrates are comparably analysed. It is found that the coadsorption of O2/CO or 2CO molecules is more stable than that of the isolated O2 or CO molecule. Meanwhile, the adsorbed species on 3Si-graphene-Ni sheet are more stable than those on the 3Si-graphene-Pd sheet. Secondly, the possible CO oxidation reactions on the 3Si-graphene-M are investigated through Eley–Rideal (ER), Langmuir–Hinshelwood (LH) and new termolecular Eley–Rideal (TER) mechanisms. Compared with the LH and TER mechanisms, the interaction between 2CO and O2 molecules (O2?+?CO → CO3, CO3?+?CO → 2CO2) through ER reactions (< 0.2?eV) are an energetically more favourable. These results provide important reference for understanding the catalytic mechanism for CO oxidation on graphene-based catalyst.  相似文献   
912.
In recent years, nanomaterial-based drug delivery carriers have become some of the most attractive to be studied. The purpose of this study is to investigate the interaction of C60 fullerene, carbon nanotube and graphene having porphyrin-like FeN4 clusters with a non-steroidal anti-inflammatory drug (ibuprofen) by means of the density functional theory. Results showed that the graphene with FeN4 clusters could remarkably increase the tendency of graphene for adsorption of ibuprofen drug. Also, our ultraviolet–visible results show that the electronic spectra of the complexes exhibit a blue shift toward lower wavelengths (higher energies). It was found that Ibp/FeN4-graphene had high chemical reactivity, which was important for binding of the drug onto the target site. In order to go further and gain insight into the binding features of considered systems with ibuprofen drug, the Atoms in Molecules analysis was performed. Our results determine the electrostatic features of the Ibp/FeN4-graphene bonding. Consequently, the results demonstrated that the FeN4-graphene could be used as potential carriers for the delivery of ibuprofen drug.  相似文献   
913.
We study the evolution properties of spin-boson systems by a systematic numerical iteration approach, which performs well in the whole coupling regime. This approach evaluates a set of coefficients in the formal expression of the time-dependent Schr?dinger equation by expanding the initial state in Fock space. This set of coefficients is unique for the spin-boson Hamiltonian studied, allowing one to calculate the time evolution from different initial states. To complement our numerical calculations, we apply the method to the Buck–Sukumar model. We find that when the ground-state energy of the model is unbounded and no ground state exists in a certain parameter space, the time evolution of the physical quantities is naturally unstable.  相似文献   
914.
The Ammosov–Delone–Krainov (ADK) and Perelomov–Popov–Terent’ev (PPT) ionization models were widely used in strong-field physics and attosecond science due to their many attractive advantages such as simpler analytical formula, less computational demands, and satisfied accuracy of ionization rate. Based on the density-functional theory, we systematically determine accurate structure parameters of 25 atoms, 24 positive ions and 13 negative ions and tabulate for future applications. The wave function with correct asymptotic behavior is obtained by solving the time-independent Schrödinger equation with B-spline basis sets and the accurate structure parameters are extracted from this wave function in the asymptotic region. The accuracies of structure parameters are carefully examined by comparing the ionization probabilities (or yields) calculated by PPT and ADK models with those of solving the three-dimensional time-dependent Schrödinger equation and the experimental data.  相似文献   
915.
A metal-graphene hybrid metasurface polarization converter is designed in this Letter.The unit cell of the hybrid metasurface is composed of a butterfly-shaped structure whose branches are connected by multi-layer graphene sheets.The proposed device can be reconfigured from linear-to-circular polarization to cross-polarization by changing the Fermi energy of graphene.The simulation results show that for three-layer graphene,the device acts as a linear-to-circular polarization converter when EF=0 eV and switches to a cross-polarization converter when EF=0.5 eV.Compared with single-layer graphene,the device with three-layer graphene can maintain the cross-polarization conversion performance under low Fermi energy.Furthermore,two equivalent circuits in the x and y directions are developed to understand the working mechanism of the device.  相似文献   
916.
Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.  相似文献   
917.
The multicaloric effect refers to the thermal response of a solid material driven by simultaneous or sequential application of more than one type of external field.For practical applications,the multicaloric effect is a potentially interesting strategy to improve the efficiency of refrigeration devices.Here,the state of the art in multi-field driven multicaloric effect is reviewed.The phenomenology and fundamental thermodynamics of the multicaloric effect are well established.A number of theoretical and experimental research approaches are covered.At present,the theoretical understanding of the multicaloric effect is thorough.However,due to the limitation of the current experimental technology,the experimental approach is still in progress.All these researches indicated that the thermal response and effective reversibility of multiferroic materials can be improved through multicaloric cycles to overcome the inherent limitations of the physical mechanisms behind single-field-induced caloric effects.Finally,the viewpoint of further developments is presented.  相似文献   
918.
919.
920.
In order to accurately identify various types of ships and develop coastal defenses, a single feature extraction method based on slope entropy (SlEn) and a double feature extraction method based on SlEn combined with permutation entropy (SlEn&PE) are proposed. Firstly, SlEn is used for the feature extraction of ship-radiated noise signal (SNS) compared with permutation entropy (PE), dispersion entropy (DE), fluctuation dispersion entropy (FDE), and reverse dispersion entropy (RDE), so that the effectiveness of SlEn is verified, and SlEn has the highest recognition rate calculated by the k-Nearest Neighbor (KNN) algorithm. Secondly, SlEn is combined with PE, DE, FDE, and RDE, respectively, to extract the feature of SNS for a higher recognition rate, and SlEn&PE has the highest recognition rate after the calculation of the KNN algorithm. Lastly, the recognition rates of SlEn and SlEn&PE are compared, and the recognition rates of SlEn&PE are higher than SlEn by 4.22%. Therefore, the double feature extraction method proposed in this paper is more effective in the application of ship type recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号