首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   24篇
  国内免费   2篇
化学   478篇
晶体学   7篇
力学   21篇
数学   52篇
物理学   91篇
  2024年   2篇
  2023年   6篇
  2022年   13篇
  2021年   16篇
  2020年   22篇
  2019年   24篇
  2018年   11篇
  2017年   8篇
  2016年   24篇
  2015年   13篇
  2014年   32篇
  2013年   42篇
  2012年   51篇
  2011年   48篇
  2010年   24篇
  2009年   30篇
  2008年   43篇
  2007年   32篇
  2006年   29篇
  2005年   21篇
  2004年   26篇
  2003年   11篇
  2002年   14篇
  2001年   9篇
  2000年   4篇
  1999年   2篇
  1998年   9篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   11篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有649条查询结果,搜索用时 15 毫秒
21.
Kinetics of polymerization of N-vinylcarbazole over Co(II)-13X molecular sieves in toluene have been studied. The rate of polymerization (Rp) has been found to be second order with respect to percent exchange level of Co(II) and also to the NVC concentration at all the reaction temperatures of 40, 50 and 60°C. The rate increases with decreasing pH of the original exchanging salt solution up to a pH of about 3.5, beyond which it falls. The overall activation energy of polymerization has been found to decrease with increase in monomer concentration, exchange level of Co(II), and the hydrogen ion concentration of the original exchange solution. Average degree of polymerization also follows a similar trend. A mechanism of polymerization involving simultaneous propagation on both metal ion Co(II) and proton on a zeolite surface has been suggested. The two propagation routes are characterized by an average activation energy of 10.36 kcal/mol and 5.40 kcal/mol on the metal ion and proton centers, respectively.  相似文献   
22.
In accordance with the recent studies, Raman spectroscopy is well experimented as a highly sensitive analytical and imaging technique in biomedical research, mainly for various disease diagnosis including cancer. In comparison with other imaging modalities, Raman spectroscopy facilitate numerous assistances owing to its low background signal, immense spatial resolution, high chemical specificity, multiplexing capability, excellent photo stability and non-invasive detection capability. In cancer diagnosis Raman imaging intervened as a promising investigative tool to provide molecular level information to differentiate the cancerous vs non-cancerous cells, tissues and even in body fluids. Anciently, spontaneous Raman scattering is very feeble due to its low signal intensity and long acquisition time but new advanced techniques like coherent Raman scattering (CRS) and surface enhanced Raman scattering (SERS) gradually superseded these issues. So, the present review focuses on the recent developments and applications of Raman spectroscopy-based imaging techniques for cancer diagnosis.  相似文献   
23.
The skeletal presence of 1,3-azoles in a variety of bioactive natural products, pharmacophores, and organic materials demands the derivatization of such heteroarenes regioselectively. Plenty of cross-coupling as well as cyclocondensation reactions have been performed to build up these skeletons but remained commercially unrealizable. A couple of severe drawbacks are faced by these traditional protocols that require a more straightforward strategy to obviate them. Transition metal-catalyzed C−H functionalization has emerged as a superior alternative in that context. 1,3-Azoles and their benzo counterparts have been extensively functionalized exploiting both noble and earth-abundant transition metals. Lately, C-2 functionalization have gained much traction due to the ease of attaining high regioselectivity and installation of synthetically manipulative functionalities. This critical review presents a bird‘s eye view of all major C-2 functionalization of (benz)azoles catalyzed by a diverse set of metals performed over the past 15 years.  相似文献   
24.
25.
The current understanding of deviations of human microbiota caused by antibiotic treatment is poor. In an attempt to improve it, a proof-of-principle spectroscopic study of the breath of one volunteer affected by a course of antibiotics for Helicobacter pylori eradication was performed. Fourier transform spectroscopy enabled searching for the absorption spectral structures sensitive to the treatment in the entire mid-infrared region. Two spectral ranges were found where the corresponding structures strongly correlated with the beginning and end of the treatment. The structures were identified as methyl ester of butyric acid and ethyl ester of pyruvic acid. Both acids generated by bacteria in the gut are involved in fundamental processes of human metabolism. Being confirmed by other studies, measurement of the methyl butyrate deviation could be a promising way for monitoring acute gastritis and anti-Helicobacter pylori antibiotic treatment.  相似文献   
26.
4,5-Dihydropyridazinones bearing an aryl substituent at the C6-position are important motifs in drug molecules. Herein, we developed an efficient protocol to access aryl-dihydropyridazinone molecules via carbene-catalyzed asymmetric annulation between dinucleophilic arylidene hydrazones and bromoenals. Key steps in this reaction include polarity-inversion of aryl aldehyde-derived hydrazones followed by chemo-selective reaction with enal-derived α,β-unsaturated acyl azolium intermediates. The aryl-dihydropyridazinone products accessed by our protocol can be readily transformed into drugs and bioactive molecules.

Polarity inversion of arylidene hydrazones to react with bromoenals via carbene organic catalysis is disclosed. The reaction enantioselectively affords 6-aryl-4,5-dihydropyridazinones and related drugs with proven commercial applications.  相似文献   
27.
28.
Time evolution of various reactivity parameters such as electronegativity, hardness, and polarizability associated with a collision process between a proton and an X- atom/ion (X = He, Li(+), Be(2+), B(3+), C(4+)) in its ground ((1)S) and excited((1)P,(1)D,(1)F) electronic states as well as various complexions of a two-state ensemble is studied using time-dependent and excited-state density functional theory. This collision process may be considered to be a model mimicking the actual chemical reaction between an X-atom/ion and a proton to give rise to an XH(+) molecule. A favorable dynamical process is characterized by maximum hardness and minimum polarizability values according to the dynamical variants of the principles of maximum hardness and minimum polarizability. An electronic excitation or an increase in the excited-state contribution in a two-state ensemble makes the system softer and more polarizable, and the proton, being a hard acid, gradually prefers less to interact with X as has been discerned through the drop in maximum hardness value and the increase in the minimum polarizability value when the actual chemical process occurs. Among the noble gas elements, Xe is the most reactive. During the reaction: H(2) + H(+) --> H(3)(+) hardness maximizes and polarizability minimizes and H(2) is more reactive in its excited state. Regioselectivity of proton attack in the O-site of CO is clearly delineated wherein HOC(+) may eventually rearrange itself to go to the thermodynamically more stable HCO(+).  相似文献   
29.
The development of efficient and mild methods for the synthesis of organofluorine compounds is of foremost interest in various fields of chemistry. A direct pyrimidine-based selective meta-C−H perfluoroalkenylation of arenes involving several commercially available perfluoroolefins is described. The synthetic versatility of the protocol is demonstrated by an extensive substrate scope including different benzylsulfonyl, alkylarene and phenylacetic acid scaffolds. The generality of this methodology including the meta-C−H perfluoroalkenylation of Ibuprofen, the facile cleavage of the directing group and gram-scale reactions are presented.  相似文献   
30.
A chemical flux of sulfur hexafluoride (SF6) in conjunction with low-energy Ar-ion bombardment has been used for chemically assisted ion beam etching (CAIBE) of silicon and silicon dioxide. The study has shown a large degree of independent control over the selectivity and anisotropy in dry etching. The total etch rate could be controlled by varying either the Ar-ion milling parameters or the chemical flux of SF6. Etch rate enhancement of 7–8 for silicon and 3–4 for silicon dioxide have been obtained over pure physical etching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号