首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16253篇
  免费   694篇
  国内免费   44篇
化学   11024篇
晶体学   250篇
力学   551篇
综合类   1篇
数学   1271篇
物理学   3894篇
  2024年   54篇
  2023年   186篇
  2022年   410篇
  2021年   460篇
  2020年   513篇
  2019年   581篇
  2018年   538篇
  2017年   505篇
  2016年   745篇
  2015年   515篇
  2014年   830篇
  2013年   1375篇
  2012年   1267篇
  2011年   1315篇
  2010年   852篇
  2009年   656篇
  2008年   821篇
  2007年   814篇
  2006年   633篇
  2005年   559篇
  2004年   430篇
  2003年   352篇
  2002年   295篇
  2001年   172篇
  2000年   146篇
  1999年   112篇
  1998年   80篇
  1997年   113篇
  1996年   111篇
  1995年   83篇
  1994年   76篇
  1993年   101篇
  1992年   106篇
  1991年   78篇
  1990年   71篇
  1989年   76篇
  1988年   56篇
  1987年   46篇
  1986年   48篇
  1985年   69篇
  1984年   69篇
  1983年   57篇
  1982年   53篇
  1981年   42篇
  1980年   47篇
  1979年   71篇
  1978年   56篇
  1977年   56篇
  1976年   49篇
  1975年   36篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
A new Cu(II) coordination polymer, {[Cu(1,3-BIP)(TFBDC)]·DMF}n(1,1,3-BIP is a 1,3-bis(imidazole)propane, and H2TFBDC is 2,3,5,6-tetrafluoroterephthalic acid) was prepared under solvothermal conditions and characterized by single-crystal and powder X-ray diffraction, IR spectra, thermogravimetric analyses and elemental analyses. The single-crystal X-ray diffraction reveals that metal coordination polymer 1(MCP 1) shows a two-dimensional sheet layer structure, which is further reinforced through strong intermolecular hydrogen bonding to form a 3 D supramolecular framework. Furthermore, the photocatalytic experiment result indicates the degradation ratios of methyl orange(MO) reach 83.4% within 180 minutes when MCP 1 acts as catalyst.  相似文献   
992.
Transition Metal Chemistry - Nickel(II) complexes with octahedral coordination stabilized by N-donor ligands corresponds to [{(ArO)2PS2}2Ni·L2] [Ar = 4-(C2H5)C6H4 (3), and...  相似文献   
993.
Helically folded aromatic oligoamide foldamers have a size and geometrical parameters very distinct from those of α-helices and are not obvious candidates for α-helix mimicry. Nevertheless, they offer multiple sites for attaching side chains. It was found that some arrays of side chains at the surface of an aromatic helix make it possible to mimic extended α-helical surfaces. Synthetic methods were developed to produce quinoline monomers suitably functionalized for solid phase synthesis. A dodecamer was prepared. Its crystal structure validated the initial design and showed helix bundling involving the α-helix-like interface. These results open up new uses of aromatic helices to recognize protein surfaces and to program helix bundling in water.  相似文献   
994.
The N-heterocyclic carbene, imidazole-2-ylidene, and its main group (13-15) analogues contain cyclically conjugated 6π electrons. Experimental 1H nuclear magnetic resonance (NMR) spectra suggest an increase in aromaticity along a period from left to right. Whereas the order along a group is as follows: period 2 > period 5 > period 4 > period 3 due to change in structure. To understand the order of aromaticity, the magnetically induced ring currents of the molecules are calculated using aromatic ring current shielding, gauge-including magnetically induced currents (GIMIC) method and Stanger's σ-model applying the gauge-including atomic orbitals NMR technique. It is found that GIMIC best describes the order of aromaticity especially along a group where current-profile changes on the bivalent atom down a group due to change in electron density. Moreover, the GIMIC provides the visualization of current by sign modulus and the anisotropy of the induced current density plots.  相似文献   
995.
To decrease the global carbon footprint concerns and to diminish the energy crisis, electrocatalytic reduction of CO2 which results in the formulation of value-added chemicals is a potential solution. In this review, single-atom catalysts (SACs) which are rapidly growing and being developed as the stimulating catalytic materials for electrocatalytic reduction of CO2 with improved selectivity, efficiency, and stability are considered. Various factors which are responsible for the efficient CO2 reduction are discussed. The pyrolytic approach for the preparation of Ni-based SACs and the maximum atom utilization efficiency for the desirable production of CO from CO2 are highlighted.  相似文献   
996.
The world is witnessing tumultuous times as major economic powers including the US, UK, Russia, India, and most of Europe continue to be in a state of lockdown. The worst-hit sectors due to this lockdown are sales, production (manufacturing), transport (aerospace and automotive) and tourism. Lockdowns became necessary as a preventive measure to avoid the spread of the contagious and infectious “Coronavirus Disease 2019” (COVID-19). This newly identified disease is caused by a new strain of the virus being referred to as Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS CoV-2; formerly called 2019-nCoV). We review the current medical and manufacturing response to COVID-19, including advances in instrumentation, sensing, use of lasers, fumigation chambers and development of novel tools such as lab-on-the-chip using combinatorial additive and subtractive manufacturing techniques and use of molecular modelling and molecular docking in drug and vaccine discovery. We also offer perspectives on future considerations on climate change, outsourced versus indigenous manufacturing, automation, and antimicrobial resistance. Overall, this paper attempts to identify key areas where manufacturing can be employed to address societal challenges such as COVID-19.  相似文献   
997.
Bergenia (Saxifragaceae) genus is native to central Asia and encompasses 32 known species. Among these, nine are of pharmacological relevance. In the Indian system of traditional medicine (Ayurveda), “Pashanabheda” (stone breaker) is an elite drug formulation obtained from the rhizomes of B. ligulata. Bergenia species also possess several other biological activities like diuretic, antidiabetic, antitussive, insecticidal, anti-inflammatory, antipyretic, anti-bradykinin, antiviral, antibacterial, antimalarial, hepatoprotective, antiulcer, anticancer, antioxidant, antiobesity, and adaptogenic. This review provides explicit information on the traditional uses, phytochemistry, and pharmacological significance of the genus Bergenia. The extant literature concerned was systematically collected from various databases, weblinks, blogs, books, and theses to select 174 references for detailed analysis. To date, 152 chemical constituents have been identified and characterized from the genus Bergenia that belong to the chemical classes of polyphenols, phenolic-glycosides, lactones, quinones, sterols, tannins, terpenes, and others. B. crassifolia alone possesses 104 bioactive compounds. Meticulous pharmacological and phytochemical studies on Bergenia species and its conservation could yield more reliable compounds and products of pharmacological significance for better healthcare.  相似文献   
998.
Filamins (FLN) are a family of actin-binding proteins involved in regulating the cytoskeleton and signaling phenomenon by developing a network with F-actin and FLN-binding partners. The FLN family comprises three conserved isoforms in mammals: FLNA, FLNB, and FLNC. FLNB is a multidomain monomer protein with domains containing an actin-binding N-terminal domain (ABD 1–242), encompassing two calponin-homology domains (assigned CH1 and CH2). Primary variants in FLNB mostly occur in the domain (CH2) and surrounding the hinge-1 region. The four autosomal dominant disorders that are associated with FLNB variants are Larsen syndrome, atelosteogenesis type I (AOI), atelosteogenesis type III (AOIII), and boomerang dysplasia (BD). Despite the intense clustering of FLNB variants contributing to the LS-AO-BD disorders, the genotype-phenotype correlation is still enigmatic. In silico prediction tools and molecular dynamics simulation (MDS) approaches have offered the potential for variant classification and pathogenicity predictions. We retrieved 285 FLNB missense variants from the UniProt, ClinVar, and HGMD databases in the current study. Of these, five and 39 variants were located in the CH1 and CH2 domains, respectively. These variants were subjected to various pathogenicity and stability prediction tools, evolutionary and conservation analyses, and biophysical and physicochemical properties analyses. Molecular dynamics simulation (MDS) was performed on the three candidate variants in the CH2 domain (W148R, F161C, and L171R) that were predicted to be the most pathogenic. The MDS analysis results showed that these three variants are highly compact compared to the native protein, suggesting that they could affect the protein on the structural and functional levels. The computational approach demonstrates the differences between the FLNB mutants and the wild type in a structural and functional context. Our findings expand our knowledge on the genotype-phenotype correlation in FLNB-related LS-AO-BD disorders on the molecular level, which may pave the way for optimizing drug therapy by integrating precision medicine.  相似文献   
999.
Rational engineering and assimilation of diverse chemo‐ and biocatalytic functionalities in a single nanostructure is highly desired for efficient multistep chemical reactions but has so far remained elusive. Here, we design and synthesize multimodal catalytic nanoreactors (MCNRs) based on a mesoporous metal‐organic framework (MOF). The MCNRs consist of customizable metal nanocrystals and stably anchored enzymes in the mesopores, as well as coordinatively unsaturated cationic metal MOF nodes, all within a single nanoreactor space. The highly intimate and diverse catalytic mesoporous microenvironments and facile accessibility to the active site in the MCNR enables the cooperative and synergistic participation from different chemo‐ and biocatalytic components. This was shown by one‐pot multistep cascade reactions involving a heterogeneous catalytic nitroaldol reaction followed by a [Pd/lipase]‐catalyzed chemoenzymatic dynamic kinetic resolution to yield optically pure (>99 % ee) nitroalcohol derivatives in quantitative yields.  相似文献   
1000.
Ductility is a common phenomenon in many metals but is difficult to achieve in molecular crystals. Organic crystals bend plastically on one or two face‐specific directions but fracture when stressed in any other arbitrary directions. An exceptional metal‐like ductility and malleability in the isomorphous crystals of two globular molecules, BH3NMe3 and BF3NMe3, is reported, with characteristic tensile stretching, compression, twisting, and thinning. The mechanically deformed samples, which transition to lower symmetry phases, retain good long‐range order amenable to structure determination by single‐crystal X‐ray diffraction. Molecules in these high‐symmetry crystals interact through electrostatic forces (B??N+) to form columnar structures with multiple slip planes and weak dispersive forces between columns. On the other hand, the limited number of facile slip planes and strong dihydrogen bonding in BH3NHMe2 negates ductility. Our study has implications for the design of soft ferroelectrics, solid electrolytes, barocalorics, and soft robotics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号