首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69313篇
  免费   15005篇
  国内免费   5521篇
化学   63921篇
晶体学   694篇
力学   3073篇
综合类   345篇
数学   6171篇
物理学   15635篇
  2024年   87篇
  2023年   701篇
  2022年   894篇
  2021年   1356篇
  2020年   2505篇
  2019年   3766篇
  2018年   2109篇
  2017年   1698篇
  2016年   4829篇
  2015年   5001篇
  2014年   5223篇
  2013年   6433篇
  2012年   5931篇
  2011年   5408篇
  2010年   4942篇
  2009年   4747篇
  2008年   4452篇
  2007年   3708篇
  2006年   3406篇
  2005年   3153篇
  2004年   2666篇
  2003年   2347篇
  2002年   2984篇
  2001年   2234篇
  2000年   2023篇
  1999年   1123篇
  1998年   703篇
  1997年   608篇
  1996年   639篇
  1995年   557篇
  1994年   503篇
  1993年   397篇
  1992年   416篇
  1991年   383篇
  1990年   308篇
  1989年   275篇
  1988年   174篇
  1987年   167篇
  1986年   156篇
  1985年   141篇
  1984年   97篇
  1983年   92篇
  1982年   71篇
  1981年   59篇
  1980年   46篇
  1979年   27篇
  1978年   28篇
  1977年   36篇
  1976年   27篇
  1973年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The tetramer destabilization of transthyretin into monomers and its fibrillation are phenomena leading to amyloid deposition. Heparan sulfate proteoglycan (HSPG) has been found in all amyloid deposits. A chromatographic approach was developed to compare binding parameters between wild‐type transthyretin (wtTTR) and an amyloidogenic transthyretin (sTTR). Results showed a greater affinity of sTTR for HSPG at pH 7.4 compared with wtTTR owing to the monomeric form of sTTR. Analysis of the thermodynamic parameters showed that van der Waals interactions were involved at the complex interface for both transthyretin forms. For sTTR, results from the plot representing the number of protons exchanged vs pH showed that the binding mechanism was pH‐dependent with a critical value at a pH 6.5. This observation was due to the protonation of a histidine residue as an imidazolium cation, which was not accessible when TTR was in its tetrameric structure. At pH >6.5, dehydration at the binding interface and several contacts between nonpolar groups of sTTR and HSPG were also coupled to binding for an optimal hydrogen‐bond network. At pH <6.5, the protonation of the His residue from sTTR monomer when pH decreased broke the hydrogen‐bond network, leading to its destabilization and thus producing slight conformational changes in the sTTR monomer structure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
62.
The first examples of the catalytic asymmetric 1,3‐dipolar cycloaddition of azomethine ylides with acyclic activated 1,3‐dienes (and 1,3‐enynes) are described. Under copper catalysis, a selective cycloaddition at the terminal γ,δ‐C?C bond is observed. In addition, depending on the ligand used, either the exo or the endo adduct can be obtained with high selectivity. Under appropriate reaction conditions, the acyclic 1,6‐addition product is detected, suggesting a stepwise mechanism. The resulting C4‐alkenyl‐substituted pyrrolidines are suitable substrates for further access to polycyclic systems, as highlighted by the preparation of hexahydrochromeno[4,3‐b]pyrrole and the tetracyclic core of the alkaloid gracilamine.  相似文献   
63.
Metal‐based catalysts and initiators have played a pivotal role in the ring‐opening polymerization (ROP) of cyclic esters, thanks to their high activity and remarkable ability to control precisely the architectures of the resulting polyesters in terms of molar mass, dispersity, microstructure, or tacticity. Today, after two decades of extensive research, the field is slowly reaching maturity. However, several challenges remain, while original concepts have emerged around new types or new applications of catalysis. This Review is not intended to comprehensively cover all of these aspects. Rather, it provides a personal overview of the very recent progress achieved in some selected, important aspects of ROP catalysis—stereocontrol and switchable catalysis. Hence, the first part addresses the development of new metal‐based catalysts for the isoselective ROP of racemic lactide towards stereoblock copolymers, and the use of syndioselective ROP metal catalysts to control the monomer sequence in copolymers. A second part covers the development of ROP catalysts—primarily metal‐based catalysts, but also organocatalysts—that can be externally regulated by the use of chemical or photo stimuli to switch them between two states with different catalytic abilities. Current challenges and opportunities are highlighted.  相似文献   
64.
65.
66.

Consider the following nonparametric model: \(Y_{ni}=g(x_{ni})+ \varepsilon _{ni},1\le i\le n,\) where \(x_{ni}\in {\mathbb {A}}\) are the nonrandom design points and \({\mathbb {A}}\) is a compact set of \({\mathbb {R}}^{m}\) for some \(m\ge 1\), \(g(\cdot )\) is a real valued function defined on \({\mathbb {A}}\), and \(\varepsilon _{n1},\ldots ,\varepsilon _{nn}\) are \(\rho ^{-}\)-mixing random errors with zero mean and finite variance. We obtain the Berry–Esseen bounds of the weighted estimator of \(g(\cdot )\). The rate can achieve nearly \(O(n^{-1/4})\) when the moment condition is appropriate. Moreover, we carry out some simulations to verify the validity of our results.

  相似文献   
67.
Tunneled metal oxides such as α-Mn8O16 (hollandite) have proven to be compelling candidates for charge-storage materials in high-density batteries. In particular, the tunnels can support one-dimensional chains of K+ ions (which act as structure-stabilizing dopants) and H2O molecules, as these chains are favored by strong H-bonds and electrostatic interactions. In this work, we examine the role of water molecules in enhancing the stability of K+-doped α-Mn8O16 (cryptomelane). The combined experimental and theoretical analyses show that for high enough concentrations of water and tunnel-ions, H2O displaces K+ ions from their natural binding sites. This displacement becomes energetically favorable due to the formation of K2+ dimers, thereby modifying the stoichiometric charge of the system. These findings have potentially significant technological implications for the consideration of cryptomelane as a Li+/Na+ battery electrode. Our work establishes the functional role of water in altering the energetics and structural properties of cryptomelane, an observation that has frequently been overlooked in previous studies.

Water displaces potassium ions and initiates the formation of a homonuclear dimer ion (K2+) in the tunnels of hollandite.  相似文献   
68.
Yuan  Cheng  Qin  Yi  Zhang  Mi  Zhang  Huifen  Jiao  Shiyun  Li  Baocai 《Chromatographia》2015,78(19):1283-1292

To establish a new method of testing and evaluating the quality of refined montan wax (RMW), digital color and GC fingerprint technology were introduced and applied. CIE Lab color mode was used to digitize the exterior colors of RMW, and the score obtained through a fitting function was also used to reflect its quality. It is shown that they were in complete accord with the human visual perception trend. The GC fingerprint was used to characterize the internal chemical information of RMW, and the composition of its internal features was reflected through the relative retention time (RRT) and relative peak area (RPA) values. It is shown that there was a high degree of similarity between the fingerprints, while certain differences also existed. This can be used to implement effective application of RMW to aspects such as quality control, adulteration identification, and origin attributions.

  相似文献   
69.
70.
Optimized combination of chemical agents was selected for sensitive electrochemical detection of dissolved ruthenium tris-(2,2′-bipyridine) (Ru-bipy). The detection was based on the chemical amplification mechanism, in which the anodic current of a redox-active analyte was amplified by a sacrificial electron donor in solution. On indium-doped tin oxide (ITO) electrodes, electrochemical reaction of the analyte was reversible, but that of the electron donor was greatly suppressed. Several transition metal complexes, such as ferrocene and tris-(2,2′-bipyridine) complexes of osmium, iron and ruthenium, were evaluated as model analyte. A correlation between the amplified current and the standard potential of the complex was observed, and Ru-bipy generated the largest current. A variety of organic bases, acids and zwitterions were assessed as potential electron donor. Sodium oxalate was found to produce the largest amplification factor. With Ru-bipy as the model analyte and oxalate as the electron donor, the analyte concentration curve was linear up to 50 μM, with a lower detection limit of approximately 50 nM. Preliminary work was presented in which a Ru-bipy derivative was attached to bovine serum albumin and detected electrochemically. Although the combination of Ru-bipy, oxalate and ITO electrode has been used before for electrochemiluminescent detection of Ru-bipy and oxalate, as well as electrochemical detection of oxalate, its utility in amplified voltammetric detection of Ru-bipy as a potential electrochemical label has not been reported previously.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号