首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   24篇
  国内免费   3篇
化学   504篇
晶体学   16篇
力学   14篇
数学   53篇
物理学   118篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   12篇
  2019年   9篇
  2018年   6篇
  2016年   9篇
  2015年   16篇
  2014年   12篇
  2013年   41篇
  2012年   33篇
  2011年   31篇
  2010年   18篇
  2009年   20篇
  2008年   58篇
  2007年   42篇
  2006年   61篇
  2005年   61篇
  2004年   38篇
  2003年   21篇
  2002年   33篇
  2001年   9篇
  2000年   15篇
  1999年   6篇
  1998年   3篇
  1997年   7篇
  1996年   6篇
  1995年   11篇
  1994年   9篇
  1993年   7篇
  1992年   11篇
  1991年   2篇
  1990年   3篇
  1989年   9篇
  1988年   9篇
  1987年   2篇
  1985年   10篇
  1984年   7篇
  1983年   5篇
  1982年   10篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   5篇
  1969年   1篇
  1967年   1篇
排序方式: 共有705条查询结果,搜索用时 31 毫秒
111.
The intermolecular photoinduced electron transfer (PET) processes of 1,8-naphthalimide (NI) derivatives including NI-linker-phenothiazine dyads were investigated in a protic H(2)O/CH(3)CN (v/v=1:1) solvent using ns-laser flash photolysis with 355 nm-laser excitation. NI derivatives are surrounded by H(2)O in the ground state in H(2)O/CH(3)CN. The T(1)-T(n) absorption band of (3)NI* was observed at around 470 nm. The transient absorption band at around 410 nm increased concomitantly with the decay of (3)NI* in H(2)O/CH(3)CN. This implies that hydrated NI anion radical (NI*(-)) is primarily generated via the quenching of (3)NI* by NI at the diffusion control rate. This intermolecular PET did not occur in aprotic CH(3)CN. The formation and decay times of NI*(-) showed strong dependence on the concentration of NI. Then, we suggest that NI*(-) could undergo proton abstraction to give ketyl radical species of NI [NI(H)*] in H(2)O/CH(3)CN.  相似文献   
112.
The adsorption and micellization behavior of novel sugar-based gemini surfactants (N,N(')-dialkyl-N,N(')-digluconamide ethylenediamine, Glu(n)-2-Glu(n), where n is the hydrocarbon chain length of 8, 10 and 12) has been studied on the basis of static/dynamic surface tension, fluorescence, dynamic light scattering (DLS) and cryogenic transmission electron microscope (cryo-TEM) data. The static surface tension of the aqueous Glu(n)-2-Glu(n) solutions measured at the critical micelle concentration (cmc) is observed to be significantly lower than that of the corresponding monomeric surfactants. This suggests that the gemini surfactants, newly synthesized in the current study, are able to form a closely packed monolayer film at the air/aqueous solution interface. The greater ability in the molecular association is supported by the remarkably (approximately 100-200 times) lower cmc of the gemini surfactants compared with the corresponding monomeric ones. With a combination of the fluorescence and DLS data, a structural transformation of the Glu(n)-2-Glu(n) micelles is suggested to occur with an increase in the concentration. The cryo-TEM measurements clearly confirm the formation of worm-like micelles of Glu(12)-2-Glu(12) at the concentration well above the cmc.  相似文献   
113.
Photochemical properties of p-phenylphenacyl derivatives (PP-X) having C-halide, C-S, and C-O bonds in the lowest (T 1) and higher (T n ) triplet excited states were investigated in solution by using single-color and stepwise two-color two-laser flash photolysis techniques. PP-Xs (X = Br, SH, and SPh) undergo beta-bond dissociation in the lowest singlet excited states (S 1) while the C-X bonds of other PP-Xs are stable upon 266-nm laser photolysis. The T 1(pi,pi*) states of PP-X were efficiently produced during 355-nm laser photolysis of benzophenone as a triplet sensitizer. Triplet PP-Xs deactivate to the ground state without photochemical reactions. Upon 430-nm laser photolysis of the T 1 states of PP-X (X = Br, Cl, SH, SPh, OH, OMe, and OPh), decomposition of PP-X in the T n states was found. On the basis of the changes in the transient absorption, quantum yields (Phi dec) of the decomposition of PP-X in the T n states were determined, while bond dissociation energies (BDE) of the C-X bonds were calculated by computations. According to the relationship between the Phi dec and BDE values, it was shown that the decomposition of PP-X in the T n state is due to beta-cleavage of the corresponding C-X bond, and that the state energy of the reactive T n for the C-O bond cleavage differs from that for the C-halide and C-S bond cleavage. The reaction profiles of the C-X bond cleavage of PP-X in the T n states were discussed.  相似文献   
114.
Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n = 2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were −0.48 and −0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E1/2 (mV) = E′ − 59pH for 2H+/2e process in the pH range 3–11. In the range higher than pH 11, the value was estimated with E1/2 (mV) = E′ − 30pH , which may correspond to H+/2e process. The tunneling barrier coefficients (β) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.  相似文献   
115.
116.
A rhodium-catalyzed silylation reaction of carbon-cyano bonds using disilane has been developed. Under these catalytic conditions, carbon-cyano bonds in aryl, alkenyl, allyl, and benzyl cyanides bearing a variety of functional groups can be silylated. The observation of an enamine side product in the silylation of benzyl cyanides and related stoichiometric studies indicate that the carbon-cyano bond cleavage proceeds through the deinsertion of silyl isocyanide from eta(2)-iminoacyl complex B. Knowledge gained from these studies has led to the development of a new intramolecular biaryl coupling reaction in which aryl cyanides and aryl chlorides are cross-coupled.  相似文献   
117.
118.
A marine green alga, Codium fragile, exhibits a characteristic in vivo absorption band of a specific keto-carotenoid, siphonaxanthin, at 535 nm. We examined the ultrafast fluorescence kinetics by direct excitation of this band after purification of light-harvesting complex II. On the basis of a high fluorescence anisotropy (0.39) up to 1 ps and a very short lifetime (60 fs), we identified the 535 nm band as a new electronically excited state (Sx) located between the S1 and S2 states. Excited-state dynamics of the Sx state were further discussed in relation to the energy transfer processes in the complexes.  相似文献   
119.
The Br?nsted acid catalyzed formal insertion of an isocyanide into a C-O bond of an acetal is described. A diverse array of acyclic and cyclic acetals can be applied to the catalytic insertion to form alpha-alkoxy imidates. Functional groups, such as nitro, cyano, halogen, ester, and alkoxy groups, are tolerant to the reaction conditions employed. The course of the reaction is highly dependent on the structure of the isocyanide. The use of an electron-deficient aryl isocyanide, such as 2c and 2d, is required to selectively obtain the monoinsertion product. When aryl isocyanides containing alkyl substituents, such as 2a and 2b, are employed, two molecules of the isocyanide are incorporated, and the double-insertion product is obtained. The reaction of tert-octyl isocyanide also induces a double incorporation, but the subsequent acid-mediated fragmentation leads to the 2-alkoxy imidoyl cyanide. The monoinsertion products, alpha-alkoxy imidates, can readily be hydrolyzed to alpha-alkoxy esters, realizing the formal carbonylation of an acetal.  相似文献   
120.
One-electron oxidation of alcohols such as methanol, ethanol, and 2-propanol by 1,3,5-trimethoxybenzene radical cation (TMB*+) in the excited state (TMB*+*) was observed during the two-color two-laser flash photolysis. TMB*+ was formed by the photoinduced bimolecular electron-transfer reaction from TMB to 2,3,5,6-tetrachlorobenzoquinone (TCQ) in the triplet excited-state during the first 355-nm laser flash photolysis. Then, TMB*+* was generated from the selective excitation of TMB*+ during the second 532 nm laser flash photolysis. Hole transfer rate constants from TMB*+* to methanol, ethanol, and 2-propanol were calculated to be (5.2 +/- 0.5) x 10(10), (1.4 +/- 0.3) x 10(11), and (3.2 +/- 0.6) x 10(11) M-1 s-1, respectively. The order of the hole transfer rate constants is consistent with oxidation potentials of alcohol. Formation of TCQH radical (TCQH*) with a characteristic absorption peak at 435 nm was observed in the microsecond time scale, suggesting that deprotonation of the alcohol radical cation occurs after the hole transfer and that TCQ radical anion (TCQ*-), generated together with TMB*+ by the photoinduced electron-transfer reaction, reacts with H+ to give TCQH*.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号