首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
化学   41篇
晶体学   2篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  2011年   8篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1983年   4篇
  1982年   1篇
排序方式: 共有43条查询结果,搜索用时 140 毫秒
21.
Summary The interaction of copper(II) salts with the imidazole-containing disulphide 5-(1,2,5-dithiazaepan-5-ylmethylene)-4-methyl-2-ethyl imidazole (MAMI) in MeOH have been investigated. The 11 Cu(ClO4)2MAMI system exhibited a single ligand field band at ca. 12200cm-1, an intense shoulder at ca. 31500 cm-1 and a less intense split feature at 24400 and 25300cm-1 assignable to S() CuII and S() CuII charge transfer (CT) transitions, respectively. The e.p.r. parameters suggested the presence of a CuN2SO chromophore, however; the 11 Cu(NO3)2MAMI system did not exhibit a S CuII CT band and the g value was comparatively high. An electrochemical study of the 11 Cu(ClO4)2MAMI system in MeOH revealed that the copper-disulphide interaction, though weaker, would confer a high redox potential as well as reversibility, similar to the copper-thioether interaction.  相似文献   
22.
The copper(II) and copper(I) complexes of the chelating ligands 2,6-bis(benzimidazol-2'-ylthiomethyl)pyridine (bbtmp) and N,N-bis(benzimidazol-2'-ylthioethyl)methylamine (bbtma) have been isolated and characterized by electronic and EPR spectra. The molecular structures of a redox pair of Cu(II/I) complexes, viz., [Cu(bbtmp)(NO(3))]NO(3), 1, and [Cu(bbtmp)]NO(3), 2, and of [Cu(bbtmp)Cl], 3, have been determined by single-crystal X-ray crystallography. The cation of the green complex [Cu(bbtmp)(NO(3))]NO(3) possesses an almost perfectly square planar coordination geometry in which the corners are occupied by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand and an oxygen atom of the nitrate ion. The light-yellow complex [Cu(bbtmp)]NO(3) contains copper(I) with trigonal planar coordination geometry constituted by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand. In the yellow chloride complex [Cu(bbtmp)Cl] the asymmetric unit consists of two complex molecules that are crystallographically independent. The coordination geometry of copper(I) in these molecules, in contrast to the nitrate, is tetrahedral, with pyridine and two benzimidazole nitrogen atoms of bbtmp ligand and the chloride ion occupying the apexes. The above coordination structures are unusual in that the thioether sulfurs are not engaged in coordination and the presence of two seven-membered chelate rings facilitates strong coordination of the benzimidazole nitrogens and discourage any distortion in Cu(II) coordination geometry. The solid-state coordination geometries are retained even in solution, as revealed by electronic, EPR, and (1)H NMR spectra. The electrochemical behavior of the present and other similar CuN(3) complexes has been examined, and the thermodynamic aspects of the electrode process are correlated to the stereochemical reorganizations accompanying the redox changes. The influence of coordinated pyridine and amine nitrogen atoms on the spectral and electrochemical properties has been discussed.  相似文献   
23.
The iron(III) complexes of the 4N ligands 1,4-bis(2-pyridylmethyl)-1,4-diazepane (L1), 1,4-bis(6-methyl-2-pyridylmethyl)-1,4-diazepane (L2), and 1,4-bis(2-quinolylmethyl)-1,4-diazepane (L3) have been generated in situ in CH 3CN solution, characterized as [Fe(L1)Cl 2] (+) 1, [Fe(L2)Cl 2] (+) 2, and [Fe(L3)Cl 2] (+) 3 by using ESI-MS, absorption and EPR spectral and electrochemical methods and studied as functional models for the extradiol cleaving catechol dioxygenase enzymes. The tetrachlorocatecholate (TCC (2-)) adducts [Fe(L1)(TCC)](ClO 4) 1a, [Fe(L2)(TCC)](ClO 4) 2a, and [Fe(L3)(TCC)](ClO 4) 3a have been isolated and characterized by elemental analysis, absorption spectral and electrochemical methods. The molecular structure of [Fe(L1)(TCC)](ClO 4) 1a has been successfully determined by single crystal X-ray diffraction. The complex 1a possesses a distorted octahedral coordination geometry around iron(III). The two tertiary amine (Fe-N amine, 2.245, 2.145 A) and two pyridyl nitrogen (Fe-N py, 2.104, 2.249 A) atoms of the tetradentate 4N ligand are coordinated to iron(III) in a cis-beta configuration, and the two catecholate oxygen atoms of TCC (2-) occupy the remaining cis positions. The Fe-O cat bond lengths (1.940, 1.967 A) are slightly asymmetric and differ by 0.027 A only. On adding catecholate anion to all the [Fe(L)Cl 2] (+) complexes the linear tetradentate ligand rearranges itself to provide cis-coordination positions for bidentate coordination of the catechol. Upon adding 3,5-di- tert-butylcatechol (H 2DBC) pretreated with 1 equiv of Et 3N to 1- 3, only one catecholate-to-iron(III) LMCT band (648-800 nm) is observed revealing the formation of [Fe(L)(HDBC)] (2+) involving bidentate coordination of the monoanion HDBC (-). On the other hand, when H 2DBC pretreated with 2 equiv of Et 3N or 1 or 2 equiv of piperidine is added to 1- 3, two intense catecholate-to-iron(III) LMCT bands appear suggesting the formation of [Fe(L)(DBC)] (+) with bidentate coordination of DBC (2-). The appearance of the DBSQ/H 2DBC couple for [Fe(L)Cl 2] (+) at positive potentials (-0.079 to 0.165 V) upon treatment with DBC (2-) reveals that chelated DBC (2-) in the former is stabilized toward oxidation more than the uncoordinated H 2DBC. It is remarkable that the [Fe(L)(HDBC)] (2+) complexes elicit fast regioselective extradiol cleavage (34.6-85.5%) in the presence of O 2 unlike the iron(III) complexes of the analogous linear 4N ligands known so far to yield intradiol cleavage products exclusively. Also, the adduct [Fe(L2)(HDBC)] (2+) shows a higher extradiol to intradiol cleavage product selectivity ( E/ I, 181:1) than the other adducts [Fe(L3)(HDBC)] (2+) ( E/ I, 57:1) and [Fe(L1)(HDBC)] (2+) ( E/ I, 9:1). It is proposed that the coordinated pyridyl nitrogen abstracts the proton from chelated HDBC (-) in the substrate-bound complex and then gets displaced to facilitate O 2 attack on the iron(III) center to yield the extradiol cleavage product. In contrast, when the cleavage reaction is performed in the presence of a stronger base like piperidine or 2 equiv of Et 3N a faster intradiol cleavage is favored over extradiol cleavage suggesting the importance of bidentate coordination of DBC (2-) in facilitating intradiol cleavage.  相似文献   
24.
A series of mononuclear mixed ligand copper(II) complexes [Cu(bba)(diimine)](ClO(4))(2)1-4, where bba is N,N-bis(benzimidazol-2-ylmethyl)amine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), or dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. The coordination geometry around copper(II) in 2 is described as square pyramidal with the two benzimidazole nitrogen atoms of the primary ligand bba and the two nitrogen atoms of phen (2) co-ligand constituting the equatorial plane and the amine nitrogen atom of bba occupying the apical position. In contrast, the two benzimidazole nitrogen atoms and the amine nitrogen atom of bba ligand and one of the two nitrogen atoms of 5,6-dmp constitute the equatorial plane of the trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry of 3 with the other nitrogen atom of 5,6-dmp occupying the apical position. The structures of 1-4 have been optimized by using the density functional theory (DFT) method at the B3LYP/6-31G(d,p) level. Absorption spectral titrations with Calf Thymus (CT) DNA reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq (4) > 5,6-dmp (3) > phen (2) > bpy (1). The DNA binding affinity of 4 is higher than 2 revealing that the π-stacking interaction of the dpq ring in between the DNA base pairs with the two bzim moieties of the bba ligand stacked along the DNA surface is more intimate than that of phen. The complex 3 is bound to DNA more strongly than 1 and 2 through strong hydrophobic interaction of the methyl groups on 5,6-positions of the phen ring in the DNA grooves. The extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes parallels the trend in DNA binding affinities. The large enhancement in relative viscosity of DNA upon binding to 3 and 4 supports the DNA binding modes proposed. Interestingly, the 5,6-dmp complex 3 is selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that it induces a B to A conformational change. In contrast, 2 and 4 show induced CD responses indicating their involvement in strong DNA binding. Interestingly, only the dpq complex 4, which displays the strongest DNA binding affinity and is efficient in cleaving DNA in the absence of an activator with a rate constant of 5.8 ± 0.1 h(-1), which is higher than the uncatalyzed rate of DNA cleavage. All the complexes exhibit oxidative DNA cleavage ability, which varies as 4 > 2 > 3 > 1 (ascorbic acid) and 3 > 2 > 4 > 1 (H(2)O(2)). Also, the complexes cleave the protein bovine serum albumin in the presence of H(2)O(2) as an activator with the cleavage ability varying in the order 3 > 4 > 2 > 1. The highest efficiency of 3 to cleave both DNA and protein in the presence of H(2)O(2) is consistent with its strong hydrophobic interaction with the biopolymers. The IC(50) values of 1-4 against cervical cancer cell lines (SiHa) are almost equal to that of cisplatin, indicating that they have the potential to act as effective anticancer drugs in a time-dependent manner. The morphological assessment data obtained by using acridine orange/ethidium bromide (AO/EB) and Hoechst 33258 staining reveal that 3 induces apoptosis much more effectively than the other complexes. Also, the alkaline single-cell gel electrophoresis study (comet assay) suggests that the same complex induces DNA fragmentation more efficiently than others.  相似文献   
25.
The tetradentate ligands 1,8-bis(pyrid-2-yl)-3,6-dithiaoctane (pdto) and 1,8-bis(benzimidazol-2-yl)-3,6-dithiaoctane (bbdo) form the complexes [Ru(pdto)(mu-Cl)](2)(ClO(4))(2) 1 and [Ru(bbdo)(mu-Cl)](2)(ClO(4))(2) 2 respectively. The new di-mu-chloro dimers 1 and 2 undergo facile symmetrical bridge cleavage reactions with the diimine ligands 2,2'-bipyridine (bpy) and dipyridylamine (dpa) to form the six-coordinate complexes [Ru(pdto)(bpy)](ClO(4))(2) 3, [Ru(bbdo)(bpy)](ClO(4))(2) 4, [Ru(pdto)(dpa)](ClO(4))(2) 5 and [Ru(bbdo)(dpa)](ClO(4))(2) 6 and with the triimine ligand 2,2':6,2'-terpyridine (terpy) to form the unusual seven-coordinate complexes [Ru(pdto)(terpy)](ClO(4))(2) 7 and [Ru(bbdo)(terpy)](ClO(4))(2) 8. In 1 the dimeric cation [Ru(pdto)(mu-Cl)](2)(2+) is made up of two approximately octahedrally coordinated Ru(II) centers bridged by two chloride ions, which constitute a common edge between the two Ru(II) octahedra. Each ruthenium is coordinated also to two pyridine nitrogen and two thioether sulfur atoms of the tetradentate ligand. The ligand pdto is folded around Ru(II) as a result of the cis-dichloro coordination, which corresponds to a "cis-alpha" configuration [DeltaDelta/LambdaLambda(rac) diastereoisomer] supporting the possibility of some attractive pi-stacking interactions between the parallel py rings at each ruthenium atom. The ruthenium atom in the complex cations 3a and 4 exhibit a distorted octahedral coordination geometry composed of two nitrogen atoms of the bpy and the two thioether sulfur and two py/bzim nitrogen atoms of the pdto/bbdo ligand, which is actually folded around Ru(II) to give a "cis-alpha" isomer. The molecule of complex 5 contains a six-coordinated ruthenium atom chelated by pdto and dpa ligands in the expected distorted octahedral fashion. The (1)H and (13)C NMR spectral data of the complexes throw light on the nature of metal-ligand bonding and the conformations of the chelate rings, which indicates that the dithioether ligands maintain their tendency to fold themselves even in solution. The bis-mu-chloro dimers 1 and 2 show a spin-allowed but Laporte-forbidden t(2g)(6)((1)A(1g))--> t(2g)(5) e(g)(1)((1)T(1g), (1)T(2g)) d-d transition. They also display an intense Ru(II) dpi--> py/bzim (pi*) metal-to-ligand charge transfer (MLCT) transition. The mononuclear complexes 3-8 exhibit dpi-->pi* MLCT transitions in the range 340-450 nm. The binuclear complexes 1 and 2 exhibit a ligand field ((3)MC) luminescence even at room temperature, whereas the mononuclear complexes 3 and 4 show a ligand based radical anion ((3)MLCT) luminescence. The binuclear complexes 1 and 2 undergo two successive oxidation processes corresponding to successive Ru(II)/Ru(III) couples, affording a stable mixed-valence Ru(II)Ru(III) state (K(c): 1, 3.97 x 10(6); 2, 1.10 x 10(6)). The mononuclear complexes 3-7 exhibit only one while 8 shows two quasi-reversible metal-based oxidative processes. The coordinated 'soft' thioether raises the redox potentials significantly by stabilising the 'soft' Ru(II) oxidation state. One or two ligand-based reduction processes were also observed for the mononuclear complexes.  相似文献   
26.
A series of half‐sandwich Ru(II)–arene complexes [Ru(η6‐benzene)(diimine)Cl](PF6) ( 1 – 4 ), where diimine is 1,10‐phenanthroline ( 1 ), 5,6‐dimethyl‐1,10‐phenanthroline ( 2 ), dipyrido[3,2‐a:2′,3′‐c]phenazine ( 3 ) or 11,12‐dimethyldipyrido[3,2‐a:2′,3′‐c]phenazine ( 4 ), have been isolated and characterized using analytical and spectral methods. Complex 2 possesses a familiar pseudo‐octahedral ‘piano‐stool’ structure. The intrinsic DNA binding affinity of the complexes depends upon the diimine ligand: 3 (dppz) > 4 (11,12‐dmdppz) > 2 (5,6‐dmp) > 1 (phen). The π‐stacking interaction of extended planar ring of coordinated dppz ( 3 ) in between the DNA base pairs is more intimate than that of phen ( 1 ), and the incorporation of methyl groups on the dppz ring ( 4 ) discourages the stacking interaction leading to a lower DNA binding affinity for 4 than 3 . Docking studies show that all the complexes bind in the major groove of DNA. Interestingly, 3 shows an ability to convert supercoiled DNA into nicked circular DNA even at 20 μM concentration beyond which complete oxidative DNA degradation is observed. The protein binding affinity of the complexes decreases in the order 4 > 3 > 2 > 1 , and the higher protein binding affinity of 4 illustrates the strong involvement of methyl groups on dppz ring in hydrophobic interaction with protein. Also, 4 cleaves protein more efficiently than the other complexes in the presence of H2O2. It is notable that 2 , 3 and 4 display cytotoxicity against human cervical cancer cell lines (SiHa) with potency higher than the currently used drug cisplatin. Acridine orange/ethidium bromide staining studies reveal that 3 induces apoptosis in cancer cells much more efficiently than 4 .  相似文献   
27.
28.
The new iron(III) complex [Fe(L3)Cl(2)], where H(L3) is the tripodal monophenolate ligand N,N-dimethyl-N'-(pyrid-2-ylmethyl)-N'-(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine, has been isolated and studied as a structural and functional model for catechol dioxygenase enzymes. The complex possesses a distorted octahedral iron(III) coordination geometry constituted by the phenolate oxygen, pyridine nitrogen and two amine nitrogens of the tetradentate ligand, and two cis-coordinated chloride ions. The Fe-O-C bond angle (134.0 degrees) and Fe-O bond length (1.889 Angstrom) are very close to those (Fe-O-C, 133 degrees and 148 degrees, Fe-O(tyrosinate), 1.81 and 1.91 Angstrom) of protocatechuate 3,4-dioxygenase enzymes. When the complex is treated with AgNO(3), the ligand-to-metal charge transfer (LMCT) band around 650 nm (epsilon, 2390 M(-1) cm(-1)) is red shifted to 665 nm with an increase in absorptivity (epsilon, 2630 M(-1) cm(-1)) and the Fe(III)/Fe(II) redox couple is shifted to a slightly more positive potential (-0.329 to -0.276 V), suggesting an increase in the Lewis acidity of the iron(III) center upon the removal of coordinated chloride ions. Furthermore, when 3,5-di-tert-butylcatechol (H(2)DBC) pretreated with 2 mol of Et(3)N is added to the complex [Fe(L3)Cl(2)] treated with 2 equiv of AgNO(3), two intense catecholate-to-iron(III) LMCT bands (719 nm, epsilon, 3150 M(-1) cm(-1); 494 nm, epsilon, 3510 M(-1) cm(-1)) are observed. Similar observations are made when H(2)DBC pretreated with 2 mol of piperidine is added to [Fe(L3)Cl(2)], suggesting the formation of [Fe(L3)(DBC)] with bidentate coordination of DBC(2-). On the other hand, when H(2)DBC pretreated with 2 mol of Et(3)N is added to [Fe(L3)Cl(2)], only one catecholate-to-iron(III) LMCT band (617 nm; epsilon, 4380 M(-1) cm(-1)) is observed, revealing the formation of [Fe(L3)(HDBC)(Cl)] involving monodentate coordination of the catecholate. The appearance of the DBSQ/H(2)DBC couple for [Fe(L3)(DBC)] at a potential (-0.083 V) more positive than that (-0.125 V) for [Fe(L3)(HDBC)(Cl)] reveals that chelated DBC(2-) in the former is stabilized toward oxidation more than the coordinated HDBC(-). It is remarkable that the complex [Fe(L3)(HDBC)(Cl)] undergoes slow selective extradiol cleavage (17.3%) of H(2)DBC in the presence of O(2), unlike the iron(III)-phenolate complexes known to yield only intradiol products. It is probable that the weakly coordinated (2.310 Angstrom) -NMe(2) group rather than chloride in the substrate-bound complex is displaced, facilitating O(2) attack on the iron(III) center and, hence, the extradiol cleavage. In contrast, when the cleavage reaction was performed in the presence of a stronger base-like piperidine before and after the removal of the coordinated chloride ions, a faster intradiol cleavage was favored over extradiol cleavage, suggesting the importance of the bidentate coordination of the catecholate substrate in facilitating intradiol cleavage. Also, intradiol cleavage is favored in dimethylformamide and acetonitrile solvents, with enhanced intradiol cleavage yields of 94 and 40%, respectively.  相似文献   
29.
The interrelated effects of growth parameters on spatial pattern formation of cadmium hydroxide in agar gel medium have been investigated. The main parameters are concentration of electrolytes,pH of the medium, density of the gel, the concentration of parasitic electrolyte and the concentration of additives. The pattern formation is explained on the basis of electrical double layer theory coupled with diffusion. Using Shinohara's revised coagulation concept, the flocculation value is calculated. With suitable combinations of parameter values, dendritic growth and spherulitic growth of cadmium hydroxide crystals have been observed.  相似文献   
30.
The X-ray crystal structure of the complex rac-[Ru(5,6-dmp)(3)]Cl(2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) reveals a distorted octahedral coordination geometry with the Ru-N bond distances shorter than in its phen analogue. Absorption spectral titrations with CT DNA reveal that rac-[Ru(5,6-dmp)(3)](2+) interacts (K(b), (8.0 +/- 0.2) x 10(4) M(-1)) much more strongly than its phen analogue. The emission intensity of the 5,6-dmp complex is dramatically enhanced on binding to DNA, which is higher than that of the phen analogue. Also, interestingly, time-resolved emission measurements on the DNA-bound complex shows biexponential decay of the excited states with the lifetimes of short- and long-lived components being higher than those for the phen analogue. The CD spectral studies of rac-[Ru(5,6-dmp)(3)](2+) bound to CT DNA provide a definite and elegant evidence for the enantiospecific interaction of the complex with B-form DNA. Competitive DNA binding studies using rac-[Ru(phen)(3)](2+) provide support for the strong binding of the complex with DNA. The Delta-enantiomer of rac-[Ru(5,6-dmp)(3)](2+) binds specifically to the right-handed B-form of poly d(GC)(12) at lower ionic strength (0.05 M NaCl), and the Lambda-enantiomer binds specifically to the left-handed Z-form of poly d(GC)(12) generated by treating the B-form with 5 M NaCl. The strong electronic coupling of the DNA-bound complex with the unbound complex facilitates the change in its enantiospecificity upon changing the conformation of DNA. The (1)H NMR spectra of rac-[Ru(5,6-dmp)(3)](2+) bound to poly d(GC)(12) reveal that the complex closely interacts most possibly in the major grooves of DNA. Electrochemical studies using ITO electrode show that the 5,6-dmp complex stabilizes CT DNA from electrocatalytic oxidation of its guanine base more than the phen analogue does.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号