首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   3篇
化学   84篇
力学   9篇
数学   12篇
物理学   46篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   12篇
  2012年   8篇
  2011年   9篇
  2010年   13篇
  2009年   5篇
  2008年   4篇
  2007年   9篇
  2006年   12篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1993年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有151条查询结果,搜索用时 0 毫秒
61.
Polysiloxane microspheres containing a large number of silanol groups were obtained by an emulsion process of modified polyhydromethylsiloxane. N‐substituted imidazole groups were grafted on these microspheres by the silylation of their silanol groups with N‐[γ‐(dimethylchlorosilyl)propyl]imidazole hydrochloride. The progress of the reaction was monitored using 29Si and 13C magic angle spinning (MAS) NMR and its impact on microsphere morphology was studied using scanning electron microscopy (SEM). The usefulness of the imidazole‐functionalized microspheres as a support for a metal catalyst was demonstrated by their reaction with PdCl2(PhCN)2. In this way a new heterogenized catalyst, Pd(II) complex with imidazole ligands supported on polysiloxane microspheres, was generated. This catalyst, MPd , was characterized using 13C and 29Si MAS NMR, X‐ray photoelectron, Fourier transform infrared and far‐infrared spectroscopies, X‐ray diffraction, SEM–energy‐dispersive X‐ray spectroscopy and wide‐angle X‐ray scattering. The catalyst appears in two structures, as Pd(II) complex and Pd(0) nanoclusters. Its catalytic activity was tested using a model reaction, the hydrogenation of cinnamaldehyde, and compared with that of an analogous complex operating in a homogeneous system. MPd showed a high activity in the promotion of hydrogenation of cinnamaldehyde. The activity in the substrate conversion was stable at least in five cycles of this reaction. The main product was hydrocinnamaldehyde which could be obtained with a yield above 70%. A mechanism of the reaction is proposed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
62.
63.
A model, which admits normalizable wave functions of the Schrödinger equation at the energy of E = 0, is exactly solved and the solutions are compared to the corresponding classical trajectories. The wave functions are proved to be square-integrable for discrete (quantized) values of the coupling constant of the used potential. We also show that our model is a specific version of the well-known Maxwell’s fish-eye. This is performed with the help of a suitably chosen conformal mapping.  相似文献   
64.
Self‐assembly of melem C6N7(NH2)3 in hot aqueous solution leads to the formation of hydrogen‐bonded, hexagonal rosettes of melem units surrounding infinite channels with a diameter of 8.9 Å. The channels are filled with strongly disordered water molecules, which are bound to the melem network through hydrogen bonds. Single‐crystals of melem hydrate C6N7(NH2)3 ? xH2O (x≈2.3) were obtained by hydrothermal treatment of melem at 200 °C and the crystal structure (R $\bar 3$ c, a=2879.0(4), c=664.01(13) pm, V=4766.4(13)×106 pm3, Z=18) was elucidated by single‐crystal X‐ray diffraction. With respect to the structural similarity to the well‐known adduct between melamine and cyanuric acid, the composition of the obtained product was further analyzed by solid‐state NMR spectroscopy. Hydrolysis of melem to cyameluric acid during syntheses at elevated temperatures could thus be ruled out. DTA/TG studies revealed that, during heating of melem hydrate, water molecules can be removed from the channels of the structure to a large extent. The solvent‐free framework is stable up to 430 °C without transforming into the denser structure of anhydrous melem. Dehydrated melem hydrate was further characterized by solid‐state NMR spectroscopy, powder X‐ray diffraction, and sorption measurements to investigate structural changes induced by the removal of water from the channels. During dehydration, the hexagonal, layered arrangement of melem units is maintained whereas the formation of additional hydrogen bonds between melem entities requires the stacking mode of hexagonal layers to be altered. It is assumed that layers are shifted perpendicular to the direction of the channels, thereby making them inaccessible for guest molecules.  相似文献   
65.
Current state of development of the elongation method originally proposed by Imamura is presented. Recent progress in methodology, including geometry optimization and employment of the fast multiple method, is highlighted. The accuracy and efficiency of the elongation method as compared to exact canonical Hartree-Fock and Kohn-Sham approaches are discussed. Potential applications are illustrated by wide range of calculations for model systems. The elongation calculations are demonstrated to be much more efficient compared to the conventional ones with high accuracy maintained. The elongation CPU time is shown by the model calculations as linear or sub-linear scaling for quasi-one-dimensional systems. Future work of development into post-Hartree-Fock methodologies are pointed out.  相似文献   
66.
67.
Cyclopropanation reactions between C60 and different malonates decorated with monosaccharides and steroids using the Bingel-Hirsch methodology have allowed the obtention of a new family of hybrid compounds in good yields. A complete set of instrumental techniques has allowed us to fully characterize the hybrid derivatives and to determine the chemical structure of monocycloadducts. Besides, the proposed structures were investigated by cyclic voltammetry, which evidenced the exclusive reductive pattern of fullerene Bingel-type monoadducts. Theoretical calculations at the DFT-D3(BJ)/PBE 6-311G(d,p) level of the synthesized conjugates predict the most stable conformation and determine the factors that control the hybrid molecules′ geometry. Some parameters such as polarity, lipophilicity, polar surface area, hydrophilicity index, and solvent-accessible surface area were also estimated, predicting its potential permeability and capability as cell membrane penetrators. Additionally, a molecular docking simulation has been carried out using the main protease of SARS-CoV-2 (Mpro) as the receptor, thus paving the way to study the potential application of these hybrids in biomedicine.  相似文献   
68.
Interest in Cd complexes has been growing in recent years. Cd complexes are considered a potential solution in the search for novel antibiotics that can fight antimicrobial resistance. In addition, Cd complexes draw attention to material chemistry. The main objective of this work was to prepare the first Cd(II) complexes with anionic forms of pyridine-based thiazolyl hydrazone (THs) ligands HLS2 [(E)-4-(4-methoxyphenyl)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)thiazole] and HLS3 [(E)-2-(2-[pyridine-2-ylmethylene]hydrazinyl)-4-(p-tolyl)thiazole] and perform their structural and spectroscopic characterization, as well as stability in solution and upon heating. Studies related to their biological activities and possible electrochromic applications are also being conducted. Complexes [Cd(HLS2)2] ( 1 ) and [Cd(HLS3)2] ( 2 ) have been characterized by a single-crystal X-ray diffraction and computational analysis of intermolecular interactions responsible for their solid-state structures was performed. Thermal stability of 1 and 2 in the solid-state was analyzed by TGA/MS, where as their solution stability was determined by the spectrophotometric titration method. Electrochemical and in situ UV–Vis spectroelectrochemical analyses of 1 and 2 were carried out to determine redox mechanisms and the influence of the substituents and electrolytes on their redox responses. The antioxidant capacity of both complexes was tested in antioxidant assays, while their antimicrobial activity was tested against five Gram-positive and four Gram-negative bacteria, as well as against three fungi. The obtained results indicate their potent antioxidant capacity. The antimicrobial activity of investigated compounds on almost all tested bacterial strains was stronger than that of the standard antibiotic erythromycin. The results of docking studies indicate that the minor groove DNA is the possible biological target of 1 and 2 .  相似文献   
69.
70.
Biological templating of inorganic nanoparticles provides promising opportunities to address the grand challenge in nanoscience of realizing the full potential of self-assembled materials. We implement such biotemplating to create magnetic nanoparticles by utilizing native protein capsid shells derived in high yield from the T7 bacteriophage virus. The magnetic nanoparticles are grown via bio-mineralization reactions inside of hollowed-out capsids that retain their original chemical recognition properties. The resultant “magnetic viruses” are uniform in geometry, physical properties, and biochemical functionality. We first coax the DNA out of the T7 virus by means of an alkaline treatment, and then grow magnetic cobalt particles inside the remaining hollow capsid shell. Related methods of fabricating bio-functional magnetic nanoparticles have utilized either recombinant, single-protein-type capsids, or involve coating previously synthesized inorganic particles with bio-ligands. Given the richness of the protein types that form the native T7 capsid, our magnetic viruses can be tailored to tune the bio-functionality and/or bio-tagging of a sample. As an example, we consider a nano-biomagnetic sensing scheme that would utilize the T7 capsid to control the magnetic nanoparticle size distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号