首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   18篇
  国内免费   2篇
化学   466篇
晶体学   6篇
力学   18篇
数学   52篇
物理学   94篇
  2024年   2篇
  2023年   7篇
  2022年   13篇
  2021年   19篇
  2020年   25篇
  2019年   25篇
  2018年   11篇
  2017年   8篇
  2016年   24篇
  2015年   12篇
  2014年   30篇
  2013年   40篇
  2012年   48篇
  2011年   44篇
  2010年   23篇
  2009年   28篇
  2008年   40篇
  2007年   31篇
  2006年   29篇
  2005年   19篇
  2004年   25篇
  2003年   12篇
  2002年   17篇
  2001年   9篇
  2000年   4篇
  1999年   2篇
  1998年   9篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   10篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有636条查询结果,搜索用时 46 毫秒
131.
Nagar  V.  Kar  R.  Pansare-Godambe  L.  Chand  N.  Bute  A.  Bhale  D.  Rao  A. V. S. S. N.  Shashidhar  R.  Maiti  Namita 《Plasma Chemistry and Plasma Processing》2022,42(5):1115-1126
Plasma Chemistry and Plasma Processing - Traditional disinfection methods against pathogens have numerous shortcomings, and inventive methods like cold plasma are required for virus inactivation....  相似文献   
132.
133.
Aggregation behavior in aqueous solution of a series of poly (ethylene glycol) (PEG)-based macromonomers with methacryloyl group as the only hydrophobic segment has been investigated using surface tension, steady-state and time-resolved fluorescence spectroscopy using pyrene as a probe, and small-angle neutron scattering techniques. The general formula of these macromonomers is CH2=C(CH3)–CO–O–Em–CH3, where E is the ethylene glycol unit and m=8 (ME8), 18 (ME18), 49 (ME49), and 120 (ME120). The results indicate that a macromonomer with 8 ethylene glycol units forms as an aggregate above a certain critical concentration, which can be defined as critical aggregation concentration. The observed high value of I1/I3 in pyrene emission spectra at the interface of these aggregates and the inability to scatter a neutron beam by these aggregates indicate that the hydrophobic cluster formed by this macromonomer is remarkably solvated. ME18 has a tendency to aggregate but others do not form any hydrophobic cluster. The homopolymerization behaviors of these macromonomers in an aqueous medium at 70°C are consistent with these possibi- lities.  相似文献   
134.
Thin films of cadmium doped zinc oxide rod like microstructure have been synthesized by a very simple sol-gel dip coating technique. Sols were prepared from hydrated zinc oxide precursor and 2-methoxyethanol solvent with monoethanolamine as a sol stabilizer. XRD pattern confirmed the hexagonal wurtzite structure of the deposited ZnO films. Surface morphologies of the films have been studied by a scanning electron microscope and an atomic force microscope, which confirmed that the films are composed of densely packed randomly oriented nano/submicron rods with diameter in the range 300–400 nm having various lengths. We proposed a possible growth mechanism for this rodlike structure. X-ray photoelectron spectroscopic study was used to determine the binding energies and the Zn 2p3/2, Cd 3d5 and O 1s peaks in the XPS spectra were located at 1021.08 eV, 404.6 eV and 529.8 eV respectively, which confirmed the Cd doping in ZnO. Cadmium content in the film was estimated both from energy dispersive X-ray analysis and XPS measurement. Band gap energy determined from optical transmittance spectra systematically varied from 3.28 eV to 3.15 eV for 0% to 5.6% of Cd doping. Urbach parameter determined from the band tail of the transmittance spectra showed that it increased with doping percentage and this parameter for a fixed cadmium doping level decreased with increase of temperature.  相似文献   
135.
Oxidative transformations utilizing molecular oxygen (O2) as the stoichiometric oxidant are of paramount importance in organic synthesis from ecological and economical perspectives. Alcohol oxidation reactions that employ O2 are scarce in homogeneous catalysis and the efficacy of such systems has been constrained by limited substrate scope (most involve secondary alcohol oxidation) or practical factors, such as the need for an excess of base or an additive. Catalytic systems employing O2 as the “primary” oxidant, in the absence of any additive, are rare. A solution to this longstanding issue is offered by the development of an efficient ruthenium‐catalyzed oxidation protocol, which enables smooth oxidation of a wide variety of primary, as well as secondary benzylic, allylic, heterocyclic, and aliphatic, alcohols with molecular oxygen as the primary oxidant and without any base or hydrogen‐ or electron‐transfer agents. Most importantly, a high degree of selectivity during alcohol oxidation has been predicted for complex settings. Preliminary mechanistic studies including 18O labeling established the in situ formation of an oxo–ruthenium intermediate as the active catalytic species in the cycle and involvement of a two‐electron hydride transfer in the rate‐limiting step.  相似文献   
136.
137.
The authors have used atomistic molecular dynamics (MD) simulations to study the structure and dynamics of water molecules inside an open ended carbon nanotube placed in a bath of water molecules. The size of the nanotube allows only a single file of water molecules inside the nanotube. The water molecules inside the nanotube show solidlike ordering at room temperature, which they quantify by calculating the pair correlation function. It is shown that even for the longest observation times, the mode of diffusion of the water molecules inside the nanotube is Fickian and not subdiffusive. They also propose a one-dimensional random walk model for the diffusion of the water molecules inside the nanotube. They find good agreement between the mean-square displacements calculated from the random walk model and from MD simulations, thereby confirming that the water molecules undergo normal mode diffusion inside the nanotube. They attribute this behavior to strong positional correlations that cause all the water molecules inside the nanotube to move collectively as a single object. The average residence time of the water molecules inside the nanotube is shown to scale quadratically with the nanotube length.  相似文献   
138.
Tensile properties of the polyimide and copolyimide films based on two dianhydrides, pyromellitic dianhydride (PMDA) and 3,3,4,4-benzophenonetetracarboxylic dianhydride (BTDA) and two diamines, 4,4-oxydianiline (ODA), and a proprietary aromatic diamine (PD) have been described. The tensile strength of the films containing higher proportions of BTDA or PMDA and PD is much higher (except the fully rigid film based on PMDA-PD which is brittle in nature) than the films containing higher proportion of ODA moiety. The films containing PD as the diamine moiety exhibit high initial moduli than the films containing exclusively or mainly ODA as the diamine moiety. The films having higher concentration of the -O- linkage originated from diamine ODA are found to exhibit higher elongation values. There is found to be no direct correlation between ηinh of the precursor casting solutions and mechanical properties of structurally different polyimide/copolyimide films. For a particular polyimide or copolyimide film, the tensile strength value is found to be less sensitive than the elongation to the variation of ηinh value of the precursor poly(amic acid) or copoly(amic acid). Tensile strength and elongation of the film, basically rigid in nature, may be improved by post-curing at 360°C/370°C. While Kapton H film retains 78% and 63.5% of its tensile strength and % elongation at break (% Eb) respectively after hot-wet mechanical test, the film based on BTDA 80, PMDA 20 and PD shows an increase of about 27% and 22% in its tensile strength and % Eb respectively.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号