首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   16篇
化学   249篇
晶体学   1篇
数学   23篇
物理学   68篇
  2023年   3篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2016年   10篇
  2015年   12篇
  2014年   11篇
  2013年   15篇
  2012年   18篇
  2011年   20篇
  2010年   15篇
  2009年   5篇
  2008年   18篇
  2007年   19篇
  2006年   21篇
  2005年   7篇
  2004年   10篇
  2003年   8篇
  2002年   13篇
  2001年   14篇
  2000年   9篇
  1999年   6篇
  1998年   7篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   6篇
  1989年   6篇
  1987年   4篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1980年   3篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
  1943年   4篇
  1940年   1篇
  1922年   1篇
  1921年   2篇
  1914年   1篇
  1910年   1篇
  1904年   1篇
  1903年   1篇
  1902年   4篇
  1898年   1篇
  1890年   2篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
One challenge in the development of new drug formulations is overcoming their low solubility in relevant aqueous media. Reducing the particle size of drug powders to a few hundred nanometers is a well-known method that leads to an increase in solubility due to an elevated total surface area. However, state-of-the-art comminution techniques like cryo-milling suffer from degradation and contamination of the drugs, particularly when sub-micrometer diameters are aspired that require long processing times. In this work, picosecond-pulsed laser fragmentation in liquids (LFL) of dispersed drug particles in a liquid-jet passage reactor is used as a wear-free comminution technique using the hydrophobic oral model drugs naproxen, prednisolone, ketoconazole, and megestrol acetate. Particle size and morphology of the drug particles are characterized using scanning electron microscopy (SEM) and changes in particle size distributions upon irradiation are quantified using an analytical centrifuge. The findings highlight the superior fragmentation efficiency of the liquid-jet passage reactor setup, with a 100 times higher fraction of submicrometer particles (SMP) of the drugs compared to the batch control, which enhances solubility and goes along with minimal chemical degradation (<1%), determined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), high-performance liquid chromatography (HPLC), and X-ray diffraction (XRD). Moreover, the underlying predominantly photo-mechanically induced laser fragmentation mechanisms of organic microparticles (MP) are discussed.  相似文献   
35.
36.
Lithiated alkoxyallenes, nitriles, and carboxylic acids have been employed as precursors in a three-component reaction leading to highly substituted β-alkoxy-β-ketoenamides. Upon treatment with trifluoroacetic acid, these enamides could be easily cyclized to 5-acetyloxazole derivatives. The synthesis is very flexible with respect to the substitution pattern at C-2 and C-4 of the oxazole core. A mechanistic suggestion for the oxazole formation is presented on the basis of (18)O-labeled compounds and their mass spectrometric analysis. In several cases, 1,2-diketones are formed as side products or even as major components. The acetyl moiety at C-5 of the oxazole derivatives can efficiently be converted into alkenyl or alkynyl moieties, which allows a multitude of subsequent reactions. Condensation reactions of the acetyl group provided the expected oxime or hydrazone. By applying a Fischer reaction, the phenylhydrazone could be transferred into an indole, which emphasizes the potential of 5-acetyloxazoles for the preparation of highly substituted (poly)heterocyclic systems. The alkynyl group at C-2 is prone to addition reactions, providing an enamine with interesting photophysical properties. Sonogashira couplings were performed with 5-alkynyl-substituted oxazoles, furnishing the expected aryl-substituted products. This alkynyl unit was employed for the preparation of a new, star-shaped trisoxazole derivative. The ability of this multivalent compound to form self-assembled monolayers between the basal plane of highly oriented pyrolytic graphite and 1-phenyloctane was demonstrated by scanning tunneling microscopy (STM). The star-shaped compound seems to prefer the C(3)-symmetric arrangement in this two-dimensional crystal. Two 1,2-diketones were smoothly converted into functionalized quinoxaline derivatives.  相似文献   
37.
Early development drug formulation is exacerbated by increasingly poor bioavailability of potential candidates. Prevention of attrition due to formulation problems necessitates physicochemical analysis and formulation studies at a very early stage during development, where the availability of a new substance is limited to small quantities, thus impeding extensive experiments. Miniaturization of common formulation processes is a strategy to overcome those limitations. We present a versatile technique for fabricating drug nanoformulations using a microfluidic spray dryer. Nanoparticles are formed by evaporative precipitation of the drug-loaded spray in air at room temperature. Using danazol as a model drug, amorphous nanoparticles of 20-60 nm in diameter are prepared with a narrow size distribution. We design the device with a geometry that allows the injection of two separate solvent streams, thus enabling co-spray drying of two substances for the production of drug co-precipitates with tailor-made composition for optimization of therapeutic efficiency.  相似文献   
38.
Protein-DNA conjugates have found numerous applications in the field of diagnostics and nanobiotechnology, however, their intrinsic susceptibility to DNA degradation by nucleases represents a major obstacle for many applications. We here report the selective covalent conjugation of the protein streptavidin (STV) with phosphorothioate oligonucleotides (psDNA) containing a terminal alkylthiolgroup as the chemically addressable linking unit, using a heterobifunctional NHS-/maleimide crosslinker. The psDNA-STV conjugates were synthesized in about 10% isolated yields. We demonstrate that the terminal alkylthiol group selectively reacts with the maleimide while the backbone sulfur atoms are not engaged in chemical conjugation. The novel psDNA-STV conjugates retain their binding capabilities for both biotinylated macromolecules and the complementary nucleic acid. Moreover, the psDNA-STV conjugate retained its binding capacity for complementary oligomers even after a nuclease digestion step, which effectively degrades deoxyribonucleotide oligomers and thus the binding capability of regular DNA-STV conjugates. The psDNA-STV therefore hold particular promise for applications e.g. in proteome research and novel biosensing devices, where interfering endogenous nucleic acids need to be removed from analytes by nuclease digestion.  相似文献   
39.
We prove that the Shapley value of every two-sided exact assignment game lies in the core of the game.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号