首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   6篇
  国内免费   2篇
化学   109篇
晶体学   1篇
力学   16篇
数学   9篇
物理学   34篇
  2023年   3篇
  2022年   11篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   19篇
  2010年   9篇
  2009年   11篇
  2008年   4篇
  2007年   5篇
  2006年   7篇
  2005年   10篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
91.
The effects of material, geometry, length and position of the porous channels on energy transfer in air-filled enclosures carrying a compressible pulsating wave are investigated. The pulsating fluid motion is created by an acoustic driver in a resonant chamber. Three different porous materials (Corning Celcor, Reticulated Vitreous Carbon (RVC), and Mylar plastic), three different geometries (square, open foam, and circular cross-section), six different lengths, “L” (varying between 1 and 6.5 cm, L = 0.01–0.068 λ, where λ is the wavelength of the fundamental acoustic mode), and eight different positions (hot end of the channel, varying between 0.5 and 8 cm) of the channels from the pressure anti-node is experimentally measured. The surface temperature distribution on the channel wall and temperature difference generated across the channel walls are measured while energy flow along the channel walls is calculated analytically. The experimental results are compared with a 1-D numerical code and found excellent agreement. The material, geometry, length, and position of the porous channel strongly affect the energy interactions between the porous channel and the working fluid. The temperature difference generated across the porous RVC channel increases as the porosity increases form 20 to 80 PPI; but decreases if the porosity increases further. Corning Celcor shows improved temperature difference generated across the channel as the length of the channel increases; but then decreases if the length is further increased. The results of this study are applicable to the design of thermoacoustic devices.  相似文献   
92.
The role of friction in non-colloidal suspensions is examined with a model which splits the viscosity into a frictionless component (τ*) plus a frictional component which depends on the ratio of the particle pressure (P) to the shear stress (τ). The model needs the input by computation of τ* and P and a suitable choice of particle friction coefficient (μ). It can be extended to elongational flows and cases where sphere roughness is important; volume fractions up to 0.5 are considered. It is shown that friction acts in a feedback or “bootstrap” manner to increase the suspension viscosity. The analysis is also useful for deducing the friction coefficient in suspensions from experimental data. It was applied to several sets of experimental data and reasonable correlations of the viscosities were demonstrated. An example of the correlation for spheres in a silicone oil is shown for volume fractions 0.1–0.5.
Graphical abstract
  相似文献   
93.
The present work deals with controlled mechanical systems subject to holonomic constraints. In particular, we focus on underactuated systems, defined as systems in which the number of degrees of freedom exceeds the number of inputs. The governing equations of motion can be written in the form of differential-algebraic equations (DAEs) with a mixed set of holonomic and control constraints. The rotationless formulation of multibody dynamics will be considered [1]. To this end, we apply a specific projection method to the DAEs in terms of redundant coordinates. A similar projection approach has been previously developed in the framework of generalized coordinates by Blajer & Kołodziejczyk [2]. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
94.
95.
The nonheme iron(IV)-oxido complex trans-N3-[(L1)FeIV=O(Cl)]+, where L1 is a derivative of the tetradentate bispidine 2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-1-one, is known to have an S=1 electronic ground state and to be an extremely reactive oxidant for oxygen atom transfer (OAT) and hydrogen atom abstraction (HAA) processes. Here we show that, in spite of this ferryl oxidant having the “wrong” spin ground state, it is the most reactive nonheme iron model system known so far and of a similar order of reactivity as nonheme iron enzymes (C−H abstraction of cyclohexane, −90 °C (propionitrile), t1/2=3.5 sec). Discussed are spectroscopic and kinetic data, supported by a DFT-based theoretical analysis, which indicate that substrate oxidation is significantly faster than self-decay processes due to an intramolecular demethylation pathway and formation of an oxido-bridged diiron(III) intermediate. It is also shown that the iron(III)-chlorido-hydroxido/cyclohexyl radical intermediate, resulting from C−H abstraction, selectively produces chlorocyclohexane in a rebound process. However, the life-time of the intermediate is so long that other reaction channels (known as cage escape) become important, and much of the C−H abstraction therefore is unproductive. In bulk reactions at ambient temperature and at longer time scales, there is formation of significant amounts of oxidation product – selectively of chlorocyclohexane – and it is shown that this originates from oxidation of the oxido-bridged diiron(III) resting state.  相似文献   
96.
A methodology of extending laminar flamelet model in its adiabatic form to a non-adiabatic form which can account for radiative heat loss as well as its effect on NO x pollutant has been developed. Coupling of radiation submodel with flamelet model is based on the enthalpy defect concept. Pollutant NO x has been calculated from solution of its transport equation containing source term which is derived from flamelet calculations. Flamelet calculations adopted GRI 2.11 reaction mechanism which accounts for detailed carbon and NO x chemistry. Depending on consideration of variation in scalar dissipation within flamelet calculations, the non-adiabatic form has been further divided into non-adiabatic model with single (NADS) and multiple scalar dissipation rates (NADM). Bluff-body stabilized CH4/H2 flame has been chosen as the test case to assess the capability of non-adiabatic models. Turbulence closure has been achieved with a Reynolds stress transport model. Calculations have also been carried out with a modified k-ε model for evaluation of relative performance of the two turbulence closures. Performance of non-adiabatic flamelet models in regard to the overall structure of the flame is reasonably good and the agreement is similar to that of the adiabatic flamelet model thereby indicating weakly radiating nature of the flame. However, the NADM model results in minor but encouraging improvement in NO mass fraction predictions by reducing the extent of overprediction observed with the adiabatic model. In contrast, the NADS model results in overprediction over and above the adiabatic predictions thereby showing that, it is imperative to consider variation in scalar dissipation rate in flamelet calculations to capture the effect of radiation on NO. The results also show that employing the modified k-ε model instead of the Reynolds stress transport model for turbulence closure in NADM calculations results in considerable overprediction in centerline NO mass fractions.  相似文献   
97.
Even for a 100 nm interparticle distance or a small change in particle shape,optical Fano-like plasmonic resonance mode usually vanishes completely.It would be remarkable if stable Fano-like resonance could somehow be achieved in distinctly shaped nanoparticles for more than 1μm interparticle distance,which corresponds to the far electromagnetic field region.If such far-field Fano-like plasmonic resonance can be achieved,controlling the reversal of the far-field binding force can be attained,like the currently reported reversals for near-field cases.In this work,we have proposed an optical set-up to achieve such a robust and stable Fano-like plasmonic resonance,and comparatively studied its remarkable impact on controlling the reversal of near-and far-field optical binding forces.In our proposed set-up,the distinctly shaped plasmonic tetramers are half immersed(i.e.air-benzene)in an inhomogeneous dielectric interface and illuminated by?circular?polarized light.We have demonstrated significant differences between near-and far-field optical binding forces along with the Lorentz force field,which partially depends on the object’s shape.A clear connection is shown between the far-field binding force and the resonant modes,along with a generic mechanism to achieve controllable Fano-like plasmonic resonance and the reversal of the optical binding force in both far-and near-field configurations.  相似文献   
98.
Polytopic organic ligands with hydrazone moiety are at the forefront of new drug research among many others due to their unique and versatile functionality and ease of strategic ligand design. Quantum chemical calculations of these polyfunctional ligands can be carried out in silico to determine the thermodynamic parameters. In this study two new tritopic dihydrazide ligands, N’2, N’6-bis[(1E)-1-(thiophen-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L1) and N’2, N’6-bis[(1E)-1-(1H-pyrrol-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L2) were successfully prepared by the condensation reaction of pyridine-2,6-dicarboxylic hydrazide with 2-acetylthiophene and 2-acetylpyrrole. The FT-IR, 1H, and 13C NMR, as well as mass spectra of both L1 and L2, were recorded and analyzed. Quantum chemical calculations were performed at the DFT/B3LYP/cc-pvdz/6-311G+(d,p) level of theory to study the molecular geometry, vibrational frequencies, and thermodynamic properties including changes of ∆H, ∆S, and ∆G for both the ligands. The optimized vibrational frequency and (1H and 13C) NMR obtained by B3LYP/cc-pvdz/6-311G+(d,p) showed good agreement with experimental FT-IR and NMR data. Frontier molecular orbital (FMO) calculations were also conducted to find the HOMO, LUMO, and HOMO–LUMO gaps of the two synthesized compounds. To investigate the biological activities of the ligands, L1 and L2 were tested using in vitro bioassays against some Gram-negative and Gram-positive bacteria and fungus strains. In addition, molecular docking was used to study the molecular behavior of L1 and L2 against tyrosinase from Bacillus megaterium. The outcomes revealed that both L1 and L2 can suppress microbial growth of bacteria and fungi with variable potency. The antibacterial activity results demonstrated the compound L2 to be potentially effective against Bacillus megaterium with inhibition zones of 12 mm while the molecular docking study showed the binding energies for L1 and L2 to be −7.7 and −8.8 kcal mol−1, respectively, with tyrosinase from Bacillus megaterium.  相似文献   
99.
The magnetothermal properties of pseudo binary Ho1−xErxAl2 alloys have been investigated by heat capacity measurements. Two anomalies are observed in the heat capacity of HoAl2. A sharp peak at 20 K represents the first order spin reorientation transition, and a second order anomaly occurs in the vicinity of the ferromagnetic transition at 32 K. As Ho is partially replaced by Er in Ho1−xErxAl2 the sharpness of the first order heat capacity peak diminishes with increasing Er concentration, while the temperature of this transition remains practically unaffected. The second order ferromagnetic transition shifts to higher temperature region with increasing Er concentration. The observed behaviors are explained considering the geometry of 4f charge densities of Ho3+ and Er3+ and the easy magnetization directions of HoAl2 and ErAl2.  相似文献   
100.
An earlier anti-hyperglycemic study with serial crude extracts of Phaleria macrocarpa (PM) fruit indicated methanol extract (ME) as the most effective. In the present investigation, the methanol extract was further fractionated to obtain chloroform (CF), ethyl acetate (EAF), n-butanol (NBF) and aqueous (AF) fractions, which were tested for antidiabetic activity. The NBF reduced blood glucose (p < 0.05) 15 min after administration, in an intraperitoneal glucose tolerance test (IPGTT) similar to metformin. Moreover, it lowered blood glucose in diabetic rats by 66.67% (p < 0.05), similar to metformin (51.11%), glibenclamide (66.67%) and insulin (71.43%) after a 12-day treatment, hence considered to be the most active fraction. Further fractionation of NBF yielded sub-fractions I (SFI) and II (SFII), and only SFI lowered blood glucose (p < 0.05), in IPGTT similar to glibenclamide. The ME, NBF, and SFI correspondingly lowered plasma insulin (p < 0.05) and dose-dependently inhibited glucose transport across isolated rat jejunum implying an extra-pancreatic mechanism. Phytochemical screening showed the presence of flavonoids, terpenes and tannins, in ME, NBF and SFI, and LC-MS analyses revealed 9.52%, 33.30% and 22.50% mangiferin respectively. PM fruit possesses anti-hyperglycemic effect, exerted probably through extra-pancreatic action. Magniferin, contained therein may be responsible for this reported activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号