首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   72篇
  国内免费   18篇
化学   774篇
晶体学   2篇
力学   70篇
数学   154篇
物理学   257篇
  2024年   2篇
  2023年   4篇
  2022年   29篇
  2021年   61篇
  2020年   73篇
  2019年   63篇
  2018年   68篇
  2017年   64篇
  2016年   88篇
  2015年   72篇
  2014年   83篇
  2013年   108篇
  2012年   123篇
  2011年   127篇
  2010年   67篇
  2009年   57篇
  2008年   49篇
  2007年   32篇
  2006年   19篇
  2005年   17篇
  2004年   15篇
  2003年   4篇
  2002年   9篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1994年   2篇
  1990年   1篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
  1932年   1篇
排序方式: 共有1257条查询结果,搜索用时 15 毫秒
51.
Electric field, hydrostatic pressure and conduction band non-parabolicity effects on the binding energies of the lower-lying states and the diamagnetic susceptibility of an on-center hydrogenic impurity confined in a typical GaAs/AlxGa1−xAs spherical quantum dot is theoretically investigated, by direct diagonalization of the Hamiltonian. To this end, the effect of band non-parabolicity has been performed, by means of the Luttinger-Kohn effective mass equation. Binding energies and diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot size, external electric field strength and hydrostatic pressure, with considering the edge-band non-parabolicity. Results show that the external electric field and the hydrostatic pressure have an obvious influence on the binding energies and the diamagnetic susceptibility of the impurity.  相似文献   
52.
In recent decades, nanotechnology is growing rapidly owing to its widespread application in science and industry. The aim of the experiment was chemical characterization and evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing activities of titanium nanoparticles using aqueous extract of Ziziphora clinopodioides Lam leaves (TiNPs@Ziziphora). These nanoparticles were characterized by fourier transformed infrared spectroscopy (FT‐IR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectroscopy (EDS), and UV–visible spectroscopy. The synthesized TiNPs@Ziziphora had great cell viability dose‐dependently (Investigating the effect of the plant on human umbilical vein endothelial cells (HUVECs) cell line) and revealed this method was nontoxic. Then, 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging test was done to assess the antioxidant properties, which indicated similar antioxidant potentials for TiNPs@Ziziphora and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial and antifungal characteristics. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum Fungicidal Concentration (MFC) were specified by macro‐broth dilution assay. The data were analyzed by SPSS 21 software (Duncan post‐hoc test). TiNPs@Ziziphora indicated higher antibacterial and antifungal effects than all standard antibiotics (p ≤ 0.01). Also, TiNPs@Ziziphora inhibited the growth of all bacteria at 2‐16 mg/ml concentrations and removed them at 2‐32 mg/ml concentrations (p ≤ 0.01). In case of antifungal properties of TiNPs@Ziziphora, they prevented the growth of all fungi at 2‐8 mg/ml concentrations and destroyed them at 2‐16 mg/ml concentrations (p ≤ 0.01). In vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control, treatment with Eucerin basal ointment, treatment with 3% tetracycline ointment, treatment with 0.2% TiO2 ointment, treatment with 0.2% Z. clinopodioides ointment, and treatment with 0.2% TiNPs@Ziziphora ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3 cm section was prepared from all dermal thicknesses at day 10. Use of TiNPs@Ziziphora ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate compared to other groups. In conclusion, the results revealed the useful non‐cytotoxic, antioxidant, antibacterial, antifungal, and cutaneous wound healing effects of TiNPs@Ziziphora.  相似文献   
53.
Allium saralicum R.M. Fritsch has been used in Iranian traditional medicine as a remedial supplement for microbial diseases. This paper reports the green synthesis, chemical characterization and antioxidant, cytotoxic, antibacterial and antifungal properties of silver nanoparticles obtained using aqueous extract of A. saralicum leaves. In this synthesis, no surfactants or stabilizers were used. For characterization, UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy and field emission scanning electron microscopy were used. 2,2‐Diphenyl‐1‐picrylhydrazyl was used in experiments to assess the antioxidant potential of the silver nanoparticles, which revealed an impressive prevention in comparison with butylated hydroxytoluene. The synthesized silver nanoparticles at low doses (1–250 μg dl?1) did not show marked cytotoxic activity (against cervical cancer cells (Hela), breast cancer cells (MCF‐7) and human embryonic kidney cells (HEK‐293)). Agar diffusion tests were applied to determine the antibacterial and antifungal characteristics. Compared with all standard antimicrobials, the silver nanoparticles showed higher antibacterial and antifungal activities (p ≤ 0.01). Also, the silver nanoparticles inhibited the growth of all bacteria and fungi at concentrations of 31–250 μg ml?1, and destroyed them at concentrations of 31–500 μg ml?1 (p ≤ 0.01). Because the silver nanoparticles obtained using aqueous extract of A. saralicum leaves have antioxidant, non‐cytotoxic, antifungal and antibacterial potentials, they can be used as a medical supplement or drug.  相似文献   
54.
Gold nanoparticles have unique and excellent medical and nonmedical properties and application compared with other metallic nanoparticles. Recently, they have been used for the prevention, control, and treatment of bacterial and fungal diseases. In the recent study, fresh and clean leaves of Allium noeanum Reut. ex Regel leaves have been used for the synthesis of gold nanoparticles. Also, we evaluated the cytotoxicity, antioxidant, and antibacterial properties of HAuCl4, A. noeanum, and the synthesized nanoparticles (Au NPs). These nanoparticles were analyzed by FT‐IR, UV, XRD, EDS, FE‐SEM, and TEM tests. FTIR results offered antioxidant compounds in the plant were the sources of reducing power, reducing gold ions to Au NPs. In TEM images revealed an average diameter of 10‐30 nm. At the beginning of biological experiments, DPPH free radical scavenging test was carried out to examine the antioxidant property. Also, in the bacterial part of this study, the concentration of HAuCl4, A. noeanum, and AuNPs with minimum dilution and no turbidity was considered MIC. To determine MBC, 60 μL of MIC and three preceding chambers were cultured on Muller Hinton Agar. The minimum concentration with no bacterial growth was considered MBC. Au NPs revealed excellent antioxidant potential against DPPH, non‐toxicity property against human umbilical vein endothelial cells, and antibacterial activities against Streptococcus pneumonia, Bacillus subtilis, Staphylococcus aureus, Staphylococcus saprophyticus, Salmonella typhimurium, Pseudomonas aeruginosa, Shigella flexneri, and Escherichia coli O157:H7. These findings show that the inclusion of A. noeanum extract improves the solubility of Au NPs, which led to a notable enhancement in the antioxidant and antibacterial effects.  相似文献   
55.
Iron(III) oxide (hematite, Fe2O3) nanofibers, as visible light‐induced photoanode for water oxidation reaction of a water splitting process, were fabricated through electrospinning method followed by calcination treatment. The prepared samples were characterized with scanning electron microscopy, and three‐electrode galvanostat/potentiostat for evaluating their photoelectrochemical (PEC) properties. The diameter of the as‐spun fibers is about 300 nm, and calcinated fibers have diameter less than 110 nm with mesoporous structure. Optimized multilayered electrospun α‐Fe2O3 nanostructure mats showed photocurrent density of 0.53 mA/cm2 under dark and visible illumination conditions at voltage 1.23 V and constant intensity (900 mW/cm2). This photovoltaic performance of nanostructure mats makes it suitable choice for using in the PEC water splitting application as an efficient photoanode. This method, if combined with appropriate flexible conductive substrate, has the potential for producing flexible hematite solar fuel generators. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
56.
The rhenium oxo complex [Re(O)(hoz)2][TFPB], 1 (where hoz = 2-(2'-hydroxyphenyl)-2-oxazoline(-) and TFPB = tetrakis(pentafluorophenyl)borate) catalyzes the hydrosilation of aldehydes and ketones under ambient temperature and atmosphere. The major organic product is the protected alcohol as silyl ether. Isolated yields range from 86 to 57%. The reaction requires low catalyst loading (0.1 mol %) and proceeds smoothly in CH2Cl2 as well as neat without solvent. In the latter condition, the catalyst precipitates at the end of reaction, allowing easy separation and catalyst recycling. Re(O)(hoz)(H), 3, was prepared, and its involvement in an ionic hydrosilation mechanism was evaluated. Complex 3 was found to be less hydridic than Et3SiH, refuting its participation in catalysis. A viable mechanism that is consistent with experimental findings, rate measurements, and kinetic isotope effects (Et3SiH/Et3SiD = 1.3 and benzaldehyde-H/benzaldehyde-D = 1.0) is proposed. Organosilane is activated via eta2-coordination to rhenium, and the organic carbonyl adds across the coordinated Si-H bond [2 + 2] to afford the organic reduction product.  相似文献   
57.
A rapid non-separative spectroflourimetric method based on the second-order calibration of the excitation-emission data matrix was proposed for the determination of glutathione (GSH) in human plasma. In the phosphate buffer solution of pH 8.0 GSH reacts with ortho-phthaldehyde (OPA) to yield a fluorescent adduct with maximum fluorescence intensity at about 420 nm. To handle the interfering effects of the OPA adducts with aminothiols other than GSH in plasma as well as intrinsic fluorescence of human plasma, parallel factor (PARAFAC) analysis as an efficient three-way calibration method was employed. In addition, to model the indirect interfering effect of the plasma matrix, PARAFAC was coupled with standard addition method. The two-component PARAFAC modeling of the excitation-emission matrix fluorescence spectra accurately resolved the excitation and emission spectra of GSH, plasma (or plasma constituents). The concentration-related PARAFAC score of GSH represented a linear correlation with the concentration of added GSH, similar to that is obtained in simple standard addition method. Using this standard addition curve, the GSH level in plasma was found to be 6.10 ± 1.37 μmol L−1. The accuracy of the method was investigated by analysis of the plasma samples spiked with 1.0 μmol L−1 of GSH and a recovery of 97.5% was obtained.  相似文献   
58.
Thermodynamics of the interaction between Ni2+ and human growth hormone (hGH) were determined at 27 °C in Nail solution by isothermal titration calorimetry. A new method to predict protein penetration and the effect of metal ions on the stability of proteins is introduced. The new solvation model was used to reproduce the enthalpies of Ni2+-hGH interaction over the whole range of Ni2+ concentrations. The solvation parameters recovered from the new equation, attributed to the structural change of hGH and its biological activity.  相似文献   
59.
60.
The essential oil obtained from the flowering parts of Anthemis altissima L. var. altissima was analysed by gas chromatography and gas chromatography mass spectroscopy. In this study, 34 compounds representing 98.76% of the essential oil were identified. The main components were α-terpineol (26.42%), β-pinene (9.23%), cis-chrysanthenyl acetate (6.30%), globulol (5.36%), n-tricosane (4.41%), terpinen-4-ol (4.08%) and 1,8 cineole (3.84%). Antibacterial activities of the essential oil and its two major components (α-terpineol and β-pinene) were determined using microdilution method against both Gram-positive (Staphylococcus aureus, Bacillus subtilis, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria. The essential oil showed a broad-spectrum antibacterial activity (MICs ranged from 3.13 to 6.25?μL?mL(-1)). It was found that α-terpineol with minimum inhibitory concentration (MIC) values of the range 0.87-1.56?μL?mL(-1) was a more potent antibacterial agent than β-pinene with MIC values of the range 1.56-6.25?μL?mL(-1). All of them, the essential oil, β-pinene and α-terpineol, were more effective against Gram-positive bacteria than Gram-negative ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号