首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   6篇
化学   92篇
晶体学   1篇
力学   1篇
数学   5篇
物理学   12篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   3篇
  2010年   5篇
  2009年   3篇
  2008年   14篇
  2007年   7篇
  2006年   8篇
  2005年   10篇
  2004年   7篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1995年   1篇
排序方式: 共有111条查询结果,搜索用时 0 毫秒
61.
Asymmetric cross-coupling of aryl iodides (ArI) with secondary arylphosphines (PHMe(Ar'), Ar' = (2,4,6)-R3C6H2; R = i-Pr (Is), Me (Mes), Ph (Phes)) in the presence of the base NaOSiMe3 and a chiral Pd catalyst precursor, such as Pd((R,R)-Me-Duphos)(trans-stilbene), gave the tertiary phosphines PMe(Ar')(Ar) in enantioenriched form. Sterically demanding secondary phosphine substituents (Ar') and aryl iodides with electron-donating para substituents resulted in the highest enantiomeric excess, up to 88%. Phosphination of ortho-substituted aryl iodides required a Pd(Et-FerroTANE) catalyst but gave low enantioselectivity. Observations during catalysis and stoichiometric studies of the individual steps suggested a mechanism for the cross-coupling of PhI and PHMe(Is) (1) initiated by oxidative addition to Pd(0) yielding Pd((R,R)-Me-Duphos)(Ph)(I) (3). Reversible displacement of iodide by PHMe(Is) gave the cation [Pd((R,R)-Me-Duphos)(Ph)(PHMe(Is))][I] (4), which was isolated as the triflate salt and crystallographically characterized. Deprotonation of 4-OTf with NaOSiMe3 gave the phosphido complex Pd((R,R)-Me-Duphos)(Ph)(PMeIs) (5); an equilibrium between its diastereomers was observed by low-temperature NMR spectroscopy. Reductive elimination of 5 yielded different products depending on the conditions. In the absence of a trap, the unstable three-coordinate phosphine complex Pd((R,R)-Me-Duphos)(PMeIs(Ph)) (6) was formed. Decomposition of 5 in the presence of PhI gave PMeIs(Ph) (2) and regenerated 3, while trapping with phosphine 1 during catalysis gave Pd((R,R)-Me-Duphos)(PHMe(Is))2 (7), which reacted with PhI to give 3. Deprotonation of 1:1 or 1.4:1 mixtures of cations 4-OTf gave the same 6:1 ratio of enantiomers of PMeIs(Ph) (2), suggesting that the rate of P inversion in 5 was greater than or equal to the rate of reductive elimination. Kinetic studies of the first-order reductive elimination of 5 were consistent with a Curtin-Hammett-Winstein-Holness (CHWH) scheme, in which pyramidal inversion at the phosphido ligand was much faster than P-C bond formation. The absolute configuration of the phosphine (SP)-PMeIs(p-MeOC6H4) was determined crystallographically; NMR studies and comparison to the stable complex 5-Pt were consistent with an RP-phosphido ligand in the major diastereomer of the intermediate Pd((R,R)-Me-Duphos)(Ph)(PMeIs) (5). Therefore, the favored enantiomer of phosphine 2 appeared to be formed from the major diastereomer of phosphido intermediate 5, although the minor intermediate diastereomer underwent P-C bond formation about three times more rapidly. The effects of the diphosphine ligand, the phosphido substituents, and the aryl group on the ratio of diastereomers of the phosphido intermediates Pd(diphos*)(Ar)(PMeAr'), their rates of reductive elimination, and the formation of three-coordinate complexes were probed by low-temperature 31P NMR spectroscopy; the results were also consistent with the CHWH scheme.  相似文献   
62.
A number of structurally unusual, monomeric amidophosphine complexes of copper exhibit luminescence properties that are unprecedented for monocopper systems in solution at room temperature. The complexes exhibit lifetimes as long as 150 micros in benzene and quantum efficiencies in the range of 0.16相似文献   
63.
64.
65.
Doinikov AA  Haac JF  Dayton PA 《Ultrasonics》2009,49(2):263-1403
Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1-4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws.  相似文献   
66.
The porosity in porous silicon was characterized using hyperpolarized (HP) xenon as a probe. HP xenon under conditions of continuous flow allows for the rapid acquisition of xenon NMR spectra that can be used to characterize a variety of materials. Two-dimensional exchange spectroscopy (EXSY) (129)Xe NMR experiments using HP xenon were performed to obtain exchange pathways and rates of xenon mobility between pores of different dimensions within the structure of porous silicon and to the gas phase above the sample. Pore sizes are estimated from chemical shift information and a model for pore geometry is presented.  相似文献   
67.
Photoinduced intramolecular direct arylation allows structurally unique compounds containing phenanthro[9′,10′:4,5]imidazo[1,2‐f]phenanthridine and imidazo[1,2‐f]phenanthridine skeletons, which mediate excited‐state intramolecular proton transfer (ESIPT), to be efficiently synthesized. The developed polycyclic aromatics demonstrate that the combination of five‐membered ring structures with a rigid arrangement between a proton donor and a proton acceptor provides a means for attaining large fluorescence quantum yields, exceeding 0.5, even in protic solvents. Steady‐state and time‐resolved UV/Vis spectroscopy reveals that, upon photoexcitation, the prepared protic heteroaromatics undergo ESIPT, converting them efficiently into their excited‐state keto tautomers, which have lifetimes ranging from about 5 to 10 ns. The rigidity of their structures, which suppresses nonradiative decay pathways, is believed to be the underlying reason for the nanosecond lifetimes of these singlet excited states and the observed high fluorescence quantum yields. Hydrogen bonding with protic solvents does not interfere with the excited‐state dynamics and, as a result, there is no difference between the occurrences of ESIPT processes in MeOH versus cyclohexane. Acidic media has a more dramatic effect on suppressing ESIPT by protonating the proton acceptor. As a result, in the presence of an acid, a larger proportion of the fluorescence of ESIPT‐capable compounds originates from their enol excited states.  相似文献   
68.
Nanoparticulate goethite, akaganeite, hematite, ferrihydrite and schwertmannite are important constituents of soils, sediments and mine drainage outflows. These minerals have high sorption capacities for metal and anionic contaminants such as arsenic, chromium, lead, mercury and selenium. Contaminant sequestration is accomplished mainly by surface complexation, but aggregation of particles may encapsulate sorbed surface species into the multigrain interior interfaces, with significant consequences for contaminant dispersal or remediation processes. Particularly for particle sizes on the order of 1–10 nm, the sorption capacity and surface molecular structure also may differ in important ways from bulk material. We review the factors affecting geochemical reactivity of these nanophases, focusing on the ways they may remove toxins from the environment, and include recent results of studies on nanogoethite growth, aggregation and sorption processes.  相似文献   
69.
We consider nonlinear wave motions in strongly buoyant mixed forced–free convection boundary layer flows. In the natural limit of large Reynolds number the nonlinear evolution of a single monochromatic wave mode is shown to be governed by a novel wave/mean-flow interaction in which the wave amplitude and the wave induced mean-flow are of comparable size. A nonlinear integral equation describing the bifurcation to finite-amplitude travelling wave solutions is derived. Solutions of this equation are presented together with a discussion of their physical significance. Received 10 December 1996 and accepted 14 April 1997  相似文献   
70.
White-light initiated hydrosilylation of nanocrystalline porous silicon was found to be far more efficient (in terms of both kinetics and yield) in the presence of electron-accepting molecules with suitably high reduction potentials, particularly halocarbons. It is known that absorption of visible light by nanocrystalline silicon results in the formation of excitons (electron/hole pairs) and that this exciton can be harnessed to drive a hydrosilylation reaction with an alkene; the Si-C bond forms as a result of attack of the π-electrons of the alkene on the positively charged holes. In order to better understand the white-light initiated mechanism through which this reaction takes place, and to compare with UV-mediated photoemission on Si(111)-H, a series of electron acceptors were screened for their effect on surface alkene hydrosilylation. A very strong correlation between reduction potentials (E(red)) of the oxidant and reaction efficiency was observed, with a minimum "turn-on" E(red) required for an increase to take place. The oxidant appears to accept, or remove, the electron from the nanocrystallite-bound exciton, favoring attack by the alkene on the positively charged Si nanocrystallite, leading to Si-C bond formation. Radical reactions were discounted for a number of reasons, including lack of effect of radical traps, no apparent Si-Cl bond formation, lack of oxidation of the surfaces, and others. Unlike with other oxidants such as nitro-aromatics, halocarbons do not cause additional surface reactions and promote very clean, fast, and selective hydrosilylation chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号