首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   0篇
化学   111篇
力学   1篇
数学   1篇
物理学   24篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2015年   1篇
  2013年   3篇
  2012年   3篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   8篇
  2007年   8篇
  2006年   6篇
  2005年   12篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
  1961年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
81.
This study has examined the kinetics of the decomposition of nitrosyl thiocyanate (ONSCN) by stopped flow UV-vis spectrophotometry, with the reaction products identified and quantified by infrared spectroscopy, membrane inlet mass spectrometry, ion chromatography, and CN(-) ion selective electrode. The reaction results in the formation of nitric oxide and thiocyanogen, the latter decomposing to sulfate and hydrogen cyanide in aqueous solution. The rate of consumption of ONSCN depends strongly on the concentration of SCN(-) ions and is inhibited by nitric oxide. We have developed a reaction mechanism that comprises three parallel pathways for the decomposition of ONSCN. At high thiocyanate concentrations, two reaction pathways operate including a second order reaction to generate NO and (SCN)(2) and a reversible reaction between ONSCN and SCN(-) producing NO and (SCN)(2)(-), with the rate limiting step corresponding to the consumption of (SCN)(2)(-) by reaction with ONSCN. The third reaction pathway, which becomes significant at low thiocyanate concentrations, involves formation of a previously unreported species, ONOSCN, via a reaction between ONSCN and HOSCN, the latter constituting an intermediate in the hydrolysis of (SCN)(2). ONOSCN contributes to the formation of NO via homolysis of the O-NO bond and subsequent dimerization and hydrolysis of OSCN. Fitting the chemical reactions of the model to the experimental measurements, which covered a wide range of reactant concentrations, afforded estimation of all relevant kinetic parameters and provided an excellent match. The reaction mechanism developed in this contribution may be applied to predict the rates of NO formation from ONSCN during the synthesis of azo dyes, the gassing of explosive emulsions, or nitrosation reactions occurring in the human body.  相似文献   
82.
The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined.  相似文献   
83.
The interaction of CO(2) to the interior and exterior walls of pristine and nitrogen-doped single-walled carbon nanotubes (SWNT) has been studied using density-functional theory with dispersion-correcting potentials (DCPs). Our calculations predict Gibbs energies of binding between SWNT and CO(2) of up to 9.1 kcal mol(-1), with strongest binding observed for a zigzag [10,0] nanotube, compared to armchair [6,6] (8.3 kcal mol(-1)) and chiral [8,4] (7.0 kcal mol(-1)). Doping of the [10,0] tube with nitrogen increases the Gibbs energies of binding of CO(2) by ca. 3 kcal mol(-1), but slightly reduced binding is found when [6,6] and [8,4] SWNT are doped in similar fashion. The Gibbs energy of binding of CO(2) to the exterior of the tubes is quite small compared to the binding that occurs inside the tubes. These findings suggest that the zigzag SWNT show greater promise as a means of CO(2) gas-capture.  相似文献   
84.
The ability of several density-functional theory methods to describe the kinetics and energetics of a series of ring-opening reactions of cyclopropyl and cyclobutyl-type radicals was explored. PBE, B971 and B3LYP perform quite well in their ability to replicate experiment, based upon the ring opening of cyclopropylcarbinyl, two α-trialkylsilyloxycyclopropylmethyl radicals, pentamethylcyclopropylcarbinyl, cyclobutylcarbinyl and 1-cyclobutylethylcarbinyl. The other functionals tested, which includes BLYP, CAM-B3LYP, BHandHLYP, B2PLYP and B2PLYP-D, as well as functionals designed for kinetics applications, namely MPW1K, BMK and M06-2X, all perform poorly. The latter of these functionals display some integration grid dependencies.  相似文献   
85.
We survey results on the creation of heteronuclear Fermi molecules by tuning a degenerate Bose-Fermi mixture into the neighborhood of an association resonance, either photoassociation or Feshbach, as well as the subsequent prospects for Cooper-like pairing between atoms and molecules. In the simplest case of only one molecular state, corresponding to either a Feshbach resonance or one-color photoassociation, the system displays Rabi oscillations and rapid adiabatic passage between a Bose-Fermi mixture of atoms and fermionic molecules. For two-color photoassociation, the system admits stimulated Raman adiabatic passage (STIRAP) from a Bose-Fermi mixture of atoms to stable Fermi molecules, even in the presence of particle-particle interactions. By tailoring the STIRAP sequence it is possible to deliberately convert only a fraction of the initial atoms, leaving a finite fraction of bosons behind to induce atom-molecule Cooper pairing via density fluctuations; unfortunately, this enhancement is insufficient to achieve a superfluid transition with present ultracold technology. We therefore propose the use of an association resonance that converts atoms and diatomic molecules (dimers) into triatomic molecules (trimers), which leads to a crossover from a Bose-Einstein condensate of trimers to atom-dimer Cooper pairs. Because heteronuclear dimers may possess a permanent electric dipole moment, this overall system presents an opportunity to investigate novel microscopic physics.Received: 16 June 2004, Published online: 21 September 2004PACS: 03.75.Ss Degenerate Fermi gases - 05.30.Fk Fermion systems and electron gas - 34.10. + x General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.) - 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) - 21.10.-k Properties of nuclei; nuclear energy levels  相似文献   
86.
The planar electron-rich heterocyclic di­amine 2,3-di­amino­phenazine (DAP), C12H10N4, is of particular interest to both chemists and biochemists because of its rich organic chemistry and intense luminescence. In this paper, we report the first structure of DAP in its non-protonated form and describe the intriguing crystal packing, which features π–π, hydrogen- and T-bonded interactions.  相似文献   
87.
An emulsion was formed when the thermotropic liquid crystal (LC) mixture E5 was added to an aqueous polyvinylalcohol (pva) solution and shaken. This emulsion was gelled by addition of an aqueous borax solution. The pva polymer functioned not only as the gelling agent but also appeared to act as a polymeric surfactant which stabilised the LC droplets. This high water gel-liquid crystal (HWG-LC) system contained nearly 80 wt % water and more LC wt % than polymer. The system was thermally reversible, undergoing a gel to sol transition upon heating to 70°C and reforming a gel upon cooling. The HWG-LC showed electrooptical behaviour dependent upon a switched electric field when constrained between transparent electrodes. The pressure required to form a thin film between these electrodes induced a structural emulsion in the dispersion causing LC droplet disruption and the formation of an LC network in the gel.  相似文献   
88.
89.
The thermal decomposition of propanoic acid dilute in argon has beenstudied in a single-pulse shock tube over the temperature range of 1100-1500 K and over the pressure range of 14-18 atm. The decomposition kinetics have been satisfactorily computer modelled by means of afree radical mechanism involving H and OH chains. Recent single-pulse shock tube product analyses of acetic acid decomposition have been computer modelled using a free radical mechanism for decarboxylation coupled to a unimolecular dehydration reaction. A comparison between the thermal decomposition kinetics of the C1? C3 alkanoic acids is made. The present studies do notprovide evidence for the participation of transition states involving a pentavalent carbon atom in the pyrolyses of the lower alkanoic acids.  相似文献   
90.
Using the field emission retarding potential method true work functions have been measured for the following monocrystalline substrates: W(110), W(111), W(100), Nb(100), Ni(100), Cu(100), Ir(110) and Ir(111). The electron elastic and inelastic reflection coefficients from several of these surfaces have also been examined near zero primary beam energy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号