首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   7篇
  国内免费   1篇
化学   121篇
晶体学   2篇
力学   4篇
数学   3篇
物理学   11篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2016年   1篇
  2015年   6篇
  2013年   3篇
  2012年   7篇
  2011年   9篇
  2010年   3篇
  2009年   7篇
  2008年   7篇
  2007年   10篇
  2006年   7篇
  2005年   5篇
  2004年   10篇
  2003年   4篇
  2002年   14篇
  2001年   7篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
101.
Dinuclear manganese hydride complexes of the form [Mn2(CO)8(μ-H)(μ-PR2)] (R=Ph, 1 ; R=iPr, 2 ) were used in E-selective alkyne semi-hydrogenation (E-SASH) catalysis. Catalyst speciation studies revealed rich coordination chemistry and the complexes thus formed were isolated and in turn tested as catalysts; the results underscore the importance of dinuclearity in engendering the observed E-selectivity and provide insights into the nature of the active catalyst. The insertion product obtained from treating 2 with (cyclopropylethynyl)benzene contains a cis-alkenyl bridging ligand with the cyclopropyl ring being intact. Treatment of this complex with H2 affords exclusively trans-(2-cyclopropylvinyl)benzene. These results, in addition to other control experiments, indicate a non-radical mechanism for E-SASH, which is highly unusual for Mn−H catalysts. The catalytically active species are virtually inactive towards cis to trans alkene isomerization indicating that the E-selective process is intrinsic and dinuclear complexes play a critical role. A reaction mechanism is proposed accounting for the observed reactivity which is fully consistent with a kinetic analysis of the rate limiting step and is further supported by DFT computations.  相似文献   
102.
103.
104.
105.
106.
Density functional theory was used to calculate magnetic resonance parameters for the primary stable electron acceptor anion radical (Q A ) in its binding site in the bacterial reaction center (bRC) ofRhodobacter sphaeroides. The models used for the calculations of the Q A binding pocket included all short-range interactions of the ubiquinone with the protein surroundings in a gradual manner and thus allowed a decomposition and detailed analysis of the different specific interactions. Comparison of the obtained hyperfine and quadrupole couplings with experimental data demonstrates the feasibility and reliability of calculations on such complex biologically relevant systems. With these results, the interpretation of previously published 3-pulse electron spin echo envelope modulation data could be extended and an assignment of the observed double quantum peak to a specific amino acid is proposed. The computations provide evidence for a slightly altered binding site geometry for the QA ground state as investigated by X-ray crystallography with respect to the Q A t-· anion radical state as accessible via EPR spectroscopy. This new geometry leads to improved fits of the W-band correlated-coupled radical pair spectra of Q A -P 865 compared to orientation data from the crystal structure. Finally, a correlation of the14N quadrupole parameters of His219 with the hydrogen bond geometry and a comparison with previous systematic studies on the influence of hydrogen bond geometry on quadrupole coupling parameters (J. Fritscher: Phys. Chem. Chem. Phys. 6, 4950–4956, 2004) is presented.  相似文献   
107.
108.
The popularity of pure phase encode MRI techniques, including single point imaging (SPI), is steadily increasing, particularly in instances where the samples of interest are solid-like, or for other reasons possess short effective transverse relaxation times, T2*. As the interest in these techniques grows, so too does the need for a phantom material which is representative of this class of samples. The characteristics of such a phantom should include chemical and physical stability, straightforward preparation, high signal to noise ratio and relaxation times which are both easily manipulated and representative. To this end, we have developed a gelatin/sucrose-based gel which addresses the above criteria and behaves as a very flexible short T2* phantom. An order of magnitude variation in T1 and T2 can be achieved over a reasonable range of sucrose concentration. Even larger changes can be achieved with the addition of further doping agents.  相似文献   
109.
Water transport and water management are fundamental to polymer electrolyte membrane fuel cell operation. Accurate measurements of water content within and across the Nafion layer are required to elucidate water transport behavior and validate existing numerical models.We report here a direct measurement of water content profiles across a Nafion layer under wetting and drying conditions, using a novel magnetic resonance imaging methodology developed for this purpose. This method, multi-echo double half k-space spin echo single point imaging, based on a pure phase encode spin echo, is designed for high resolution 1D depth imaging of thin film samples. The method generates high resolution (<8 μm) depth images with an SNR greater than 20, in an image acquisition time of less than 2 min. The high temporal resolution permits water content measurements in the transient states of wetting and drying, in addition to the steady state.  相似文献   
110.
The first total syntheses of littoralisone (1) and brasoside (2) have been achieved in 13 overall steps. Both natural products are forged from a common intermediate which is rapidly assembled using organocatalytic technology, including a proline-catalyzed alpha-aminoxylation and a contra-thermodynamic intramolecular Michael addition. Application of the two-step carbohydrate synthesis technology has enabled to access a selectively substituted glucose derivative for use as an intramolecular cycloaddition tether. This synthesis culminates with an intramolecular [2+2] photocycloaddition that serves to support the proposed biosynthetic origins of 1 from 2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号