首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
化学   58篇
力学   1篇
数学   2篇
物理学   18篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2012年   51篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2006年   2篇
  2004年   1篇
  1999年   3篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
  1974年   1篇
  1953年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
31.
The distribution function, W(F), of the magnitude of the net force, F, on particles in simple fluids is considered, which follows on from our previous publication [A. C. Bran?ka, D. M. Heyes, and G. Rickayzen, J. Chem. Phys. 135, 164507 (2011)] concerning the pair force, f, distribution function, P(f), which is expressible in terms of the radial distribution function. We begin by discussing the force on an impurity particle in an otherwise pure fluid but later specialize to the pure fluid, which is studied in more detail. An approximate formula, expected to be valid asymptotically, for W(F) referred to as, W(1)(F) is derived by taking into account only binary spatial correlations in the fluid. It is found that W(1)(F) = P(f). Molecular dynamics simulations of W for the inverse power (IP) and Lennard-Jones potential fluids show that, as expected, W(F) and P(f) agree well in the large force limit for a wide range of densities and potential forms. The force at which the maximum in W(F) occurs for the IP fluids follows a different algebraic dependence with density in low and high density domains of the equilibrium fluid. Other characteristic features in the force distribution functions also exhibit the same trends. An exact formula is derived relating W(F) to P(x)(F(x)), the distribution function of the x-cartesian components of the net force, F(x), on a particle. W(F) and P(x)(F(x)) have the same analytical forms (apart from constants) in the low and high force limits.  相似文献   
32.
Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications.  相似文献   
33.
DC magnetization, neutron depolarization and neutron diffraction (with both polarized and unpolarized neutrons) measurements have been reported for the Co1.1−x Zn x Ge0.1Fe1.2O1 spinels with x=0.5, 0.6 and 0.7. Neutron depolarization and neutron diffraction measurements confirm the presence of a long range ferrimagnetic ordering of the local canted spins in these ferrite samples. The observed features of low field magnetization have been explained under the framework of thermally activated domain wall movement of ferrimagnetic arrangement of local canted spins. An important role of magnetic anisotropy (due to the presence of Co2+ ions) in establishing the magnetic ordering and domain kinetics in these ferrites has been observed.  相似文献   
34.
The master equation and, more generally, Markov processes are routinely used as models for stochastic processes. They are often justified on the basis of randomization and coarse-graining assumptions. Here instead, we derive nth-order Markov processes and the master equation as unique solutions to an inverse problem. We find that when constraints are not enough to uniquely determine the stochastic model, an nth-order Markov process emerges as the unique maximum entropy solution to this otherwise underdetermined problem. This gives a rigorous alternative for justifying such models while providing a systematic recipe for generalizing widely accepted stochastic models usually assumed to follow from the first principles.  相似文献   
35.
The electronic spectrum of the CUO molecule was investigated with the IHFSCC-SD (intermediate Hamiltonian Fock-space coupled cluster with singles and doubles) method and with TD-DFT (time-dependent density functional theory) employing the PBE and PBE0 exchange-correlation functionals. The importance of both spin-orbit coupling and correlation effects on the low-lying excited-states of this molecule are analyzed and discussed. Noble gas matrix effects on the energy ordering and vibrational frequencies of the lowest electronic states of the CUO molecule were investigated with density functional theory (DFT) and TD-DFT in a supermolecular as well as a frozen density embedding (FDE) subsystem approach. This data is used to test the suitability of the FDE approach to model the influence of different matrices on the vertical electronic transitions of this molecule. The most suitable potential was chosen to perform relativistic wave function theory in density functional theory calculations to study the vertical electronic spectra of the CUO and CUONg(4) with the IHFSCC-SD method.  相似文献   
36.
Propofol (2,6-di-isopropylphenol) is probably the most widely used general anesthetic. Previous studies focused on its complexes containing 1 and 2 water molecules. In this work, propofol clusters containing three water molecules were formed using supersonic expansions and probed by means of a number of mass-resolved laser spectroscopic techniques. The 2-color REMPI spectrum of propofol[middle dot](H(2)O)(3) contains contributions from at least two conformational isomers, as demonstrated by UV/UV hole burning. Using the infrared IR/UV double resonance technique, the IR spectrum of each isomer was obtained both in ground and first excited electronic states and interpreted in the light of density functional theory (DFT) calculations at M06-2X/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The spectral analysis reveals that in both isomers the water molecules are forming cyclic hydrogen bond networks around propofol's OH moiety. Furthermore, some evidences point to the existence of isomerization processes, due to a complicated conformational landscape and the existence of multiple paths with low energy barriers connecting the different conformers. Such processes are discussed with the aid of DFT calculations.  相似文献   
37.
We have obtained the interfacial properties of short rigid-linear chains formed from tangentially bonded Lennard-Jones monomeric units from direct simulation of the vapour-liquid interface. The full long-range tails of the potential are accounted for by means of an improved version of the inhomogeneous long-range corrections of Janec?ek [J. Phys. Chem. B 110, 6264-6269 (2006)] proposed recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] valid for spherical as well as for rigid and flexible molecular systems. Three different model systems comprising of 3, 4, and 5 monomers per molecule are considered. The simulations are performed in the canonical ensemble, and the vapor-liquid interfacial tension is evaluated using the test-area method. In addition to the surface tension, we also obtain density profiles, coexistence densities, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the chain length and rigidity on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapor-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The surface tension has been scaled by critical properties and represented as a function of the difference between coexistence densities relative to the critical density.  相似文献   
38.
The reactivity of Cu monolayer (ML) and bilayer films grown on Ru(0001) towards O(2) and H(2) has been investigated. O(2) initial sticking coefficients were determined using the King and Wells method in the incident energy range 40-450 meV, and compared to the corresponding values measured on clean Ru(0001) and Cu(111) surfaces. A relative large O(2) sticking coefficient (~0.5-0.8) was measured for 1 ML Cu and even 2 ML Cu/Ru(0001). At low incident energies, this is one order of magnitude larger than the value observed on Cu(111). In contrast, the corresponding reactivity to H(2) was near zero on both Cu monolayer and bilayer films, for incident energies up to 175 meV. Water adsorption on 2 ML Cu/Ru(0001) was found to behave quite differently than on the Ru(0001) and Cu(111) surfaces. Our study shows that Cu/Ru(0001) is a highly selective system, which presents a quite different chemical reactivity towards different species in the same range of collision energies.  相似文献   
39.
Putative global energy minima of clusters formed by the adsorption of rare gases on a C(60) fullerene molecule, C(60)X(N) (X=Ne, Ar, Kr, Xe; N ≤ 70), are found using basin-hopping global optimization in an empirical potential energy surface. The association energies per rare gas atom as a function of N present two noticeable minima for Ne and Ar and just one for Kr and Xe. The minimum with the smallest N is the deepest one and corresponds to an optimal packing monolayer structure; the other one gives a monolayer with maximum packing. For Kr and Xe, optimal and maximum packing structures coincide. By using an isotropic average form of the X-C(60) interaction, we have established the relevance of the C(60) surface corrugation on the cluster structures. Quantum effects are relevant for Ne clusters. The adsorption of these rare gases on C(60) follows patterns that differ significantly from the ones found recently for He by means of experimental and theoretical methods.  相似文献   
40.
Go? models are exceedingly popular tools in computer simulations of protein folding. These models are native-centric, i.e., they are directly constructed from the protein's native structure. Therefore, it is important to understand up to which extent the atomistic details of the native structure dictate the folding behavior exhibited by Go? models. Here we address this challenge by performing exhaustive discrete molecular dynamics simulations of a Go? potential combined with a full atomistic protein representation. In particular, we investigate the robustness of this particular type of Go? models in predicting the existence of intermediate states in protein folding. We focus on the N47G mutational form of the Spc-SH3 folding domain (x-ray structure) and compare its folding pathway with that of alternative native structures produced in silico. Our methodological strategy comprises equilibrium folding simulations, structural clustering, and principal component analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号