全文获取类型
收费全文 | 339篇 |
免费 | 12篇 |
国内免费 | 1篇 |
专业分类
化学 | 306篇 |
力学 | 3篇 |
数学 | 24篇 |
物理学 | 19篇 |
出版年
2020年 | 4篇 |
2019年 | 6篇 |
2016年 | 7篇 |
2015年 | 10篇 |
2014年 | 2篇 |
2013年 | 4篇 |
2012年 | 12篇 |
2011年 | 17篇 |
2010年 | 2篇 |
2009年 | 5篇 |
2008年 | 17篇 |
2007年 | 19篇 |
2006年 | 18篇 |
2005年 | 20篇 |
2004年 | 21篇 |
2003年 | 27篇 |
2002年 | 29篇 |
2001年 | 17篇 |
2000年 | 11篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 8篇 |
1996年 | 13篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 7篇 |
1992年 | 5篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 4篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 6篇 |
1983年 | 5篇 |
1982年 | 4篇 |
1981年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 4篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 5篇 |
1972年 | 2篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1968年 | 2篇 |
1966年 | 5篇 |
1896年 | 1篇 |
排序方式: 共有352条查询结果,搜索用时 0 毫秒
11.
A series of 4,4'-disilyl-substituted-2,2'-bipyridine ligands were prepared using a metathesis reaction of the dianion of 4,4'-dimethyl-2,2'-bipyridine with several trialkylsilyl chlorides: 4,4'bis(tert-butyldimethylsilylmethyl)-2,2'-bipyridine (dTBDMSbipy), 4,4'-bis(dimethylthexylsilylmethyl)-2,2'-bipyridine (dTHEXbipy), and 4,4'-bis(neophyldimethylsilylmethyl)-2-2'-bipyridine (dNEObipy). It was observed that the side chain length correlated with the ability of the ligand to form hydrocarbon soluble complexes of copper(I) bromide, with dNEObipy forming the most soluble and easily crystallized complexes. The atom transfer radical polymerization (ATRP) of styrene using dNEObipy as the ligand displayed molecular weight control equivalent to other ATRP systems in which solubilizing ligands, such as 4,4'-di-5-nonyl-2,2'-bipyridine or 4,4'-di-n-heptyl-2,2'-bipyridine, were used. The one-to-one complex of dNEObipy with CuBr was prepared and its crystal structure was determined. The resulting complex had the ionic formulation [(dNEObipy)2Cu]+[CuBr2]- and displayed similar activities in styrene ATRP as the standard 2 dNEObipy/CuBr catalyst system. These and other polymerization results in addition to NMR experiments suggest that the predominant copper(I) species formed in ATRP solutions is the 2-to-1 ligand-to-copper(I) cation, [(dNEObipy)2Cu]+, with either a dihalocuprate or halide counteranion, depending upon the conditions. 相似文献
12.
Mohammad Ghadermazi Marilyn M. Olmstead Jafar Attar Gharamaleki Shahideh Rostami 《Acta Crystallographica. Section C, Structural Chemistry》2011,67(4):o134-o138
Two related proton‐transfer compounds, namely piperazine‐1,4‐diium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate monohydrate, C4H12N22+·C7H2O62−·H2O or (pipzH2)(cdo)·H2O, (I), and piperazine‐1,4‐diium bis(6‐carboxy‐4‐oxo‐4H‐pyran‐2‐carboxylate), C4H12N22+·2C7H3O6− or (pipzH2)(cdoH)2, (II), were obtained by the reaction of 4‐oxo‐4H‐pyran‐2,6‐dicarboxylic acid (chelidonic acid, cdoH2) and piperazine (pipz). In (I), both carboxyl H atoms of chelidonic acid have been transferred to piperazine to form the piperazine‐1,4‐diium ion. The structure is a monohydrate. All potential N—H donors are involved in N—H...O hydrogen bonds. The water molecule spans two anions via the 4‐oxo group of the pyranose ring and a carboxylate O atom. The hydrogen‐bonding motif is essentially two‐dimensional. The structure is a pseudomerohedral twin. In the asymmetric unit of (II), the anion consists of monodeprotonated chelidonic acid, while the piperazine‐1,4‐diium cation is located on an inversion centre. The single carboxyl H atom is disordered in two respects. Firstly, the disordered H atom is shared equally by both carboxylic acid groups. Secondly, the H atom is statistically disordered between two positions on either side of a centre of symmetry and is engaged in a very short hydrogen‐bonding interaction; the relevant O...O distances are 2.4549 (11) and 2.4395 (11) Å, and the O—H...O angles are 177 (6) and 177 (5)°, respectively. Further hydrogen bonding of the type N—H...O places the (pipzH2)2+ cations in pockets formed by the chains of (cdoH)− anions. In contrast with (I), the (pipzH2)2+ cations form hydrogen‐bonding arrays that are perpendicular to the anions, yielding a three‐dimensional hydrogen‐bonding motif. The structures of both (I) and (II) also feature π–π stacking interactions between aromatic rings. 相似文献
13.
MM. J. Duflos D. Letouz G. Queguiner P. Pastour 《Journal of heterocyclic chemistry》1973,10(6):1083-1084
This communication describes the synthesis of l-methyl-2,3-diformylpyrrole. This new compound is used to prepare a new heterocycle, l-methylcyclohepta[b]pyrrol-6-one and thus allows a new synthesis of l-methylpyrrolo[2,3-d]pyridazine. 相似文献
14.
The one-step reaction of some amino-substituted heterocycles with diiodomethane to give azacyanines is reported. This useful reaction is of wider application than initially reported and includes the synthesis of new substituted pyrido-, isoquino-, benzimadazo-, and benzothiazoazacyanines 7. Furthermore, treatment of these azacyanines with base generally affects a facile opening of the dihydrotriazinium ring resulting in the formation of new heterocycles 10, 11, and 12, which would be difficult to prepare by other means. This reaction takes an additional direction in the case of halo-substituted azacyanines 7b/c/d where treatment with base gives rise to new interesting derivatives of dipyridotriazines 14b/c/d. 相似文献
15.
16.
Reaction of Cu(ClO(4))(2) x 6H(2)O with a racemic mixture of the novel chiral ligand N-(1,2-bis(2-pyridyl)ethyl)pyridine-2-carboxamide (PEAH) affords only the homochiral dimeric copper(II) complexes [Cu(2)((R)()PEA)(2)](ClO(4))(2) and [Cu(2)((S)()PEA)(2)](ClO(4))(2) in a 1:1 ratio. The phenomenon of molecular self-recognition is also observed when a racemic mixture of the monomeric copper(II) complex [Cu((R(S))()PEA)(Cl)(H(2)O)] is converted into the homochiral dimeric species [Cu(2)((R(S))()PEA)(2)](ClO(4))(2) via reaction with Ag(+) ion. This is the first report of direct conversion of a racemic mixture of a chiral monomeric copper(II) complex to a mixture of the homochiral dimers. 相似文献
17.
The Co(III) complexes of N,N'-bis(2-mercaptophenyl)pyridine-2,6-dicarboxamide (PyPSH(4)), a designed pentadentate ligand with built-in carboxamide and thiolate groups, have been synthesized and studied to gain insight into the role of Cys-S oxidation in Co-containing nitrile hydratase (Co-NHase). Reaction of [Co(NH(3))(5)Cl]Cl(2) with PyPS(4)(-) in DMF affords the thiolato-bridged dimeric Co(III) complex (Et(4)N)(2)[Co(2)(PyPS)(2)] (1). Although the bridged structure is quite robust, reaction of (Et(4)N)(CN) with 1 in acetonitrile affords the monomeric species (Et(4)N)(2)[Co(PyPS)(CN)] (2). Oxidation of 2 with H(2)O(2) in acetonitrile gives rise to a mixture which, upon chromatographic purification, yields K(2)[Co(PyPSO(2)(OSO(2))(CN] (3), a species containing asymmetrically oxidized thiolates. The Co(III) metal center in 3 is coordinated to a S-bound sulfinate and an O-bound sulfonate (OSO(2)) group. Upon oxidation with H(2)O(2), 1 affords an asymmetrically oxidized dimer (Et(4)N)(2)[Co(2)(PyPS(SO(2)))(2)] (4) in which only the terminal thiolates are oxidized to form S-bound sulfinate groups while the bridging thiolates remain unchanged. The thiolato-bridge in 4 is also cleaved upon reaction with (Et(4)N)(CN) in acetonitrile, and one obtains (Et(4)N)(2)[Co(PyPS(SO(2)))(CN)] (5), a species that contains both coordinated thiolate and S-bound sulfinate around Co(III). The structures of 1-4 have been determined. The spectroscopic properties and reactivity of all the complexes have been studied to understand the behavior of the Co(III) site in Co-NHase. Unlike typical Co(III) complexes with bound CN(-) ligands, the Co(III) centers in 2 and 5 are labile and rapidly lose CN(-) in aqueous solutions. Since 3 does not show this lability, it appears that at least one thiolato sulfur donor is required in the first coordination sphere for the Co(III) center in such species to exhibit lability. Both 2 and 5 are converted to the aqua complexes [Co(PyPS)(H(2)O)](-) and [Co(PyPS(SO(2))(H(2)O)](-) in aqueous solutions. The pK(a) values of the bound water in these two species, determined by spectrophotometry, are 8.3 +/- 0.03 and 7.2 +/- 0.06, respectively. Oxidation of the thiolato sulfur (to sulfinate) therefore increases the acidity of the bound water. Since 2 and 5 promote hydrolysis of acetonitrile at pH values above their corresponding pK(a) values, it is also evident that a metal-bound hydroxide is a key player in the mechanism of hydrolysis by these model complexes of Co-NHase. The required presence of a Cys-sulfinic residue and one water molecule at the Co(III) site of Co-NHase as well as the optimal pH of the enzyme near 7 suggests that (i) modulation of the pK(a) of the bound water molecule at the active site of the enzyme could be one role of the oxidized Cys-S residue(s) and (ii) a cobalt-bound hydroxide could be responsible for the hydrolysis of nitriles by Co-NHase. 相似文献
18.
Two new iron nitrosyls derived from two designed pentadentate ligands N,N-bis(2-pyridylmethyl)-amine-N'-(2-pyridylmethyl)acetamide and N,N-bis(2-pyridylmethyl)-amine-N'-[1-(2-pyridinyl)ethyl]acetamide (PcPy(3)H and MePcPy(3)H, respectively, where H is the dissociable amide proton) have been structurally characterized. These complexes are similar to a previously reported (Fe-NO)6 complex, [(PaPy(3))Fe(NO)](ClO(4))(2) (1) that releases NO under mild conditions. The present nitrosyls, namely [(PcPy(3))Fe(NO)](ClO(4))(2) (2) and [(MePcPy(3))Fe(NO)](ClO(4))(2) (3), belong to the same (Fe-NO)6 family and exhibit (a) clean (1)H NMR spectra in CD(3)CN indicating S = 0 ground state, (b) almost linear Fe-N-O angles (177.3(5) degrees and 177.6(4) degrees for 2 and 3, respectively), and (c) N-O stretching frequencies (nu(NO)) in the range 1900-1925 cm(-)(1). The binding of NO at the non-heme iron centers of 1-3 is completely reversible and all three nitrosyls rapidly release NO when exposed to light (50 W tungsten bulb). In addition to acting as photoactive NO-donors, these complexes also nitrosylate thiols such as N-acetylpenicillamine, 3-mercaptopropionic acid, and N-acetyl-cysteine-methyl-ester in yields that range from 30 to 90% in the absence of light. The addition of alkyl or aryl thiolate (RS(-)) to the (Fe-NO)6 complexes in the absence of dioxygen results in the reduction of the iron metal center to afford the corresponding (Fe-NO)7 species. 相似文献
19.
Cui C Brynda M Olmstead MM Power PP 《Journal of the American Chemical Society》2004,126(21):6510-6511
Reaction of Ar'GeGeAr' (1) with an excess of Me3SiN3 gives the non-Kekulé, biradicaloid Ar'Ge(mu-NSiMe3)2GeAr' (3, Ar' = 2,6-Dipp2C6H3, Dipp = 2,6-i-Pr2C6H3) which has a planar Ge2N2Si2 array and pyramidal geometry at the germaniums. DFT calculations for the model MeGe(mu-NSiH3)2GeMe indicate no Ge-Ge bonding and a singlet ground state. The calculated energy difference between the optimized singlet and triplet states is 17.51 kcal/mol. 相似文献
20.
The results presented here show that the nature of the axial ligand can alter the distribution of electrons between the metal and the porphyrin in complexes where there is an oxygen atom replacing one of the meso protons. The complexes (1-MeIm)(2)Fe(III)(OEPO) and (2,6-xylylNC)(2)Fe(II)(OEPO(*)) (where OEPO is the trianionic octaethyloxophlorin ligand and OEPO(*) is the dianionic octaethyloxophlorin radical) were prepared by addition of an excess of the appropriate axial ligand to a slurry of [Fe(III)(OEPO)](2) in chloroform under anaerobic conditions. The magnetic moment of (2,6-xylylNC)(2)Fe(II)(OEPO(*)) is temperature invariant and consistent with a simple S = (1)/(2) ground state. This complex with an EPR resonance at g = 2.004 may be considered as a model for the free-radical like EPR signal seen when the meso-hydroxylated heme/heme oxygenase complex is treated with carbon monoxide. In contrast, the magnetic moment of (1-MeIm)(2)Fe(III)(OEPO) drops with temperature and indicates a spin-state change from an S = (5)/(2) or an admixed S = (3)/(2),(5)/(2) state at high temperatures (near room temperature) to an S = (1)/(2) state at temperatures below 100 K. X-ray diffraction studies show that each complex crystallizes in centrosymmetric form with the expected six-coordinate geometry. The structure of (1-MeIm)(2)Fe(III)(OEPO) has been determined at 90, 129, and 296 K and shows a gradual and selective lengthening of the Fe-N(axial bond). This behavior is consistent with population of a higher spin state at elevated temperatures. 相似文献