首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653369篇
  免费   8681篇
  国内免费   1749篇
化学   351938篇
晶体学   9425篇
力学   29170篇
综合类   20篇
数学   80779篇
物理学   192467篇
  2021年   5187篇
  2020年   6013篇
  2019年   6484篇
  2018年   8628篇
  2017年   8330篇
  2016年   12920篇
  2015年   8411篇
  2014年   12355篇
  2013年   29775篇
  2012年   23430篇
  2011年   28234篇
  2010年   19637篇
  2009年   19021篇
  2008年   25883篇
  2007年   25879篇
  2006年   23911篇
  2005年   21597篇
  2004年   19858篇
  2003年   17579篇
  2002年   17226篇
  2001年   18354篇
  2000年   14169篇
  1999年   11111篇
  1998年   9391篇
  1997年   9162篇
  1996年   8907篇
  1995年   7998篇
  1994年   8021篇
  1993年   7674篇
  1992年   8690篇
  1991年   8642篇
  1990年   8335篇
  1989年   7995篇
  1988年   8142篇
  1987年   7920篇
  1986年   7508篇
  1985年   9826篇
  1984年   10132篇
  1983年   8259篇
  1982年   8471篇
  1981年   8360篇
  1980年   7987篇
  1979年   8312篇
  1978年   8687篇
  1977年   8493篇
  1976年   8536篇
  1975年   7831篇
  1974年   7963篇
  1973年   8104篇
  1972年   5685篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
172.
In the last decade, catalytic chemical vapor deposition (CVD) has been intensively explored for the growth of single-layer graphene (SLG). Despite the scattering of guidelines and procedures, variables such as the surface texture/chemistry of catalyst metal foils, carbon feedstock, and growth process parameters have been well-scrutinized. Still, questions remain on how best to standardize the growth procedure. The possible correlation of procedures between different CVD setups is an example. Here, two thermal CVD reactors were explored to grow graphene on Cu foil. The design of these setups was entirely distinct, one being a “showerhead” cold-wall type, whereas the other represented the popular “tubular” hot-wall type. Upon standardizing the Cu foil surface, it was possible to develop a procedure for cm2-scale SLG growth that differed only by the carrier gas flow rate used in the two reactors.  相似文献   
173.
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.Subject terms: Influenza virus, Infectious diseases  相似文献   
174.
This study compares the physicochemical properties of six electrolytes comprising of three salts: LiFTFSI, NaFTFSI and KFTFSI in two solvent mixtures, the binary (3EC/7EMC) and the ternary (EC/PC/3DMC). The transport properties (conductivity, viscosity) as a function of temperature and concentration were modeled using the extended Jones-Dole-Kaminsky equation, the Arrhenius model, and the Eyring theory of transition state for activated complexes. Results are discussed in terms of ionicity, solvation shell, and cross-interactions between electrolyte components. The application of the six formulated electrolytes in symmetrical activated carbon (AC)//AC supercapacitors (SCs) was characterized by cyclic voltammetry (CV), galvanostatic cycling with potential limitation (GCPL), electrochemical impedance spectroscopy (EIS) and accelerated aging. Results revealed that the geometrical flexibility of the FTFSI anion allows it to access and diffuse easily in AC whereas its counter ions (Li+, Na+ or K+) can remain trapped in porosity. However, this drawback was partially resolved by mixing LiFTFSI and KFTFSI salts in the electrolyte.  相似文献   
175.
Journal of Analytical Chemistry - Studies on the separation of the Se and Te trace components from Co, Ni, Cu, Fe, Cr, Mo, and W macrocomponents for their determination by inductively coupled...  相似文献   
176.
ABSTRACT

By applying the geometric models and the theoretical equation, the surface tension, the molar volume and the density were studied. The empirical calculations were carried out in temperature range 623?K?≤?T?≤?1123?K. Only few thermophysical properties were estimated for eight quinary alloys: Sn3.55Ag0.5Cu3Bi3Sb, Sn3.48Ag0.5Cu3Bi5Sb, Sn3.48 Ag0.5Cu5Bi3Sb, Sn3.40 Ag0.5Cu5Bi5Sb, Sn3.53Ag1Cu3Bi3Sb, Sn3.46Ag1Cu3Bi5Sb, Sn3.46Ag1Cu5Bi3Sb, Sn3.38Ag1Cu5Bi5Sb. The results show that surface tension and density have a linear appearance for all temperatures. We have also studied the influence of the composition and temperature in the studied alloys. The obtained theoretical results are compared with the experimental ones and with the conventional Pb–Sn welds.  相似文献   
177.
178.
Molecular dynamics simulation was performed to study the formation of cluster structure, interfaces, and surfaces with different curvature radii in a perfect nanocrystal passed through by a nonlinear wave. It is shown that this process is a type of nanostructure self-organization in response to an external energy flux with subsequent development of a strong rotational field.  相似文献   
179.
Echabaane  M.  Hfaiedh  S.  Smiri  B.  Saidi  F.  Dridi  C. 《Journal of Solid State Electrochemistry》2021,25(6):1797-1806
Journal of Solid State Electrochemistry - The fast and sensitive detection of copper ions would be essential for water monitoring. Herein, we report a novel development of an impedimetric sensor...  相似文献   
180.
NOx mitigation is a central focus of combustion technologies with increasingly stringent emission regulations. NOx can also enhance the autoignition of hydrocarbon fuels and can promote soot oxidation. The reaction between allyl radical (C3H5) and NOx plays an important role in the oxidation kinetics of propene. In this work, we measured the absolute rate coefficients for the redox reaction between C3H5 and NOx over the temperature range of 1000–1252 K and pressure range of 1.5–5.0 bar using a shock tube and UV laser absorption technique. We produced C3H5 by shock heating of C3H5I behind reflected shock waves. Using a Ti:Sapphire laser system with frequency quadrupling, we monitored the kinetics of C3H5 at 220 nm. Unlike low-temperature chemistry, the two target reactions, C3H5 + NO → products (R1) and C3H5 + NO2 → products (R2), exhibited a strong positive temperature dependence for this radical-radical type reaction. However, these reactions did not show any pressure dependence over the pressure range of 1.5–5.0 bar, indicating that the measured rate coefficients are close to the high-pressure limit. The measured values of the rate coefficients resulted in the following Arrhenius expressions (in unit of cm3/molecule/s):k1(C3H5+NO)=1.49×10?10exp(?6083.6KT)(1017?1252K)k2(C3H5+NO2)=1.71×10?10exp(?3675.7KT)(1062?1250K)To our knowledge, these are the first high-temperature measurements of allyl + NOx reactions. The reported data will be highly useful in understanding the interaction of NOx with resonantly stabilized radicals as well as the mutual sensitization effect of NOx on hydrocarbon fuels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号