首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   17篇
化学   352篇
晶体学   3篇
力学   4篇
数学   24篇
物理学   52篇
  2023年   5篇
  2022年   13篇
  2021年   8篇
  2020年   12篇
  2019年   12篇
  2018年   11篇
  2017年   11篇
  2016年   21篇
  2015年   20篇
  2014年   14篇
  2013年   21篇
  2012年   26篇
  2011年   26篇
  2010年   16篇
  2009年   10篇
  2008年   20篇
  2007年   14篇
  2006年   11篇
  2005年   13篇
  2004年   14篇
  2003年   6篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1998年   3篇
  1997年   4篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1980年   2篇
  1979年   6篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   4篇
  1969年   3篇
  1960年   23篇
  1926年   1篇
  1925年   2篇
  1924年   1篇
  1923年   1篇
  1915年   1篇
排序方式: 共有435条查询结果,搜索用时 15 毫秒
361.
A mixture of 2-(di-tert-butylphosphino)biphenyl and dicarbonylacetonato rhodium(I) provides an effective catalyst system for the addition of alkynes to aldehydes and activated ketones. In contrast to the more common zinc-catalyzed processes, enolizable 1,2-dicarbonyls are excellent substrates for these rhodium-catalyzed additions. This reaction allows for the formation of propargylic alcohols under mild conditions, tolerating many functional groups (such as carboxylic acids) that are incompatible with other methods. Little selectivity was observed in cases of unsymmetrical 1,2-diketones. Addition of alkynes to aldehydes with an adjacent chirality center usually provides the Felkin addition product with excellent selectivity in some cases. Studies on the catalyst structure show that both the beta-diketonate and a carbon monoxide ligand appear to be bound to the active catalyst. The use of chiral phosphines to induce asymmetry in the propargyl alcohol products provided low enantioselectivity, which may be due to the phosphine having a distal relationship to the reacting centers. Modification of other ligands, such as the beta-diketonate, appears to be a more promising avenue for the development of an enantioselective variant.  相似文献   
362.
The synthesis of an epoxy functionalized spiroorthocarbonate (SOC) is reported. The obtained monomer has been used a slow shrinkable additive in cationic UV curing of a commercially available dicycloepoxy resin. A polymer network flexibilization was evidenced by increasing the SOC content in the photocurable formulation. It has been demonstrated that SOC acts as shrinkage reduction additive reaching expansion on volume after polymerization in the presence of 10 wt% of the functionalized spiroorthocarbonate.  相似文献   
363.
The relative affinity of the cationic triangular metallaprism, [(pCH(3)C(6)H(4)Pr(i))(6)Ru(6)(tpt)(2)(dhbq)(3)](6+) ([1](6+)), for various amino acids, ascorbic acid, and glutathione (GSH) has been studied at 37 °C in aqueous solutions at pD 7, using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). The metallaprism [1](6+), which is constituted of six (pCH(3)C(6)H(4)Pr(i))Ru corners bridged by three 1,4-benzoquinonato (dhbq) ligands and connected by two 2,4,6tri(pyridin4yl)1,3,5-triazine (tpt) triangular panels, disassembled in the presence of Arg, His, and Lys, while it remains intact with Met. Coordination to the imidazole nitrogen atom in His or to the basic NH/NH(2) groups in Arg and Lys displaces the dhbq and tpt ligands from the (p-cymene)Ru units, and subsequent coordination to the amino and carboxylato groups forms stable N,N,O metallacycles. The binding to amino acids proceeds rapidly, as determined by NMR spectroscopy. Interestingly, solutions of [1](6+) are able to catalyze oxidation of the thiol group of Cys and GSH to give the corresponding disulfides and of ascorbic acid to give the corresponding dehydroascorbic acid. Competition experiments with Arg, Cys, His, and Lys show the simultaneous formation of one single adduct, the (p-cymene)Ru-His complex, and oxidation of Cys to cystine. Furthermore, the (p-cymene)Ru-His complex formed upon the addition of His to [1][CF(3)SO(3)](6) is able to oxidize Cys to cystine much more efficiently than [1](6+). These results provide evidence against interaction with proteins as process in the release of encapsulated guest molecules. Oxidation of Cys and GSH to give the corresponding disulfides may explain the in vitro anticancer activity of [1](6+).  相似文献   
364.
Phase transfer catalysis has been employed for many nucleo-philic substitution reactions.1 Generally these reactions have employed quaternary ammonium salts as catalysts. Among the displacement reactions reported is the formation of thiocyanates.2 Tertiary amines have also been used as catalysts for phase transfer generation of carbenes.3 Recently we reported the preparation of alkyl cyanides to be catalyzed by amines under phase transfer conditions.4  相似文献   
365.
Extraction of palladium(II) with diacylated triethylenetetramine hydrochloride (with chloroform as diluent) from hydrochloric acid solutions was studied. Palladium(II) extraction from 3 mol/L HCl solutions occurs via anion-exchange mechanism. Concentrational constants were calculated and thermodynamic parameters of extraction were estimated.  相似文献   
366.
An Eglinton–Galbraith diethyne cyclization preferentially yielded a structurally unusual macrocycle, comprising a strained conjugated oligo[2]cruciform wire, forced into a 2.2 nm bow‐shape by a terpyridine rein or tether, and stabilized towards light and heat by four insulating triisopropylsilylacetylene (TIPSA) substituents. Spectroscopic ion‐binding studies revealed the macrocycle to exhibit a particularly high UV/Vis selectivity for PdII in dilute solution, and one of its precursors to afford a variety of luminescence quenching and color responses to particular metals, suggestive of promising ion‐sensor applications. Under more concentrated conditions, the new macrocycle is able to bind specific metals (e.g., AuI) within its cavity despite the steric constraints. Intriguingly, variable‐temperature (VT) UV/Vis/1H NMR investigations showed the TIPSA substituents to undergo restricted intramolecular motions along with reversible changes in the spectroscopic bandgap of the compound with temperature. In line with the theoretical calculations, the VT UV/Vis observations are consistent with a thermal modulation of the electronic conjugation through the strained oligo[2]cruciform bridge, which is coupled with redistributions within a mixture of conformational isomers of the macrocycle with differing relative twisting between the TIPSA‐substituted phenyl rings. Overall, the generation of a para‐oligo[2]cruciform, bent and flexed over nanoscopic dimensions through conformational tethering within the macrocyclic ring is noteworthy, and suggests a general approach to nanosized, curved, and strained, yet heat‐ and light‐stable, para‐phenyleneethynylene oligomers with unique physicochemical properties and challenging theoretical possibilities.  相似文献   
367.
Can cyclen (1,4,7,10‐tetraazacyclododecane) bind alkali metal azides? This question is addressed by studying the geometric and electronic structures of the alkali metal azide‐cyclen [M(cyclen)N3] complexes using density functional theory (DFT). The effects of adding a second cyclen ring to form the sandwich alkali metal azide‐cyclen [M(cyclen)2N3] complexes are also investigated. N3? is found to bind to a M+(cyclen) template to give both end‐on and side‐on structures. In the end‐on structures, the terminal nitrogen atom of the azide group (N1) bonds to the metal as well as to a hydrogen atom of the cyclen ring through a hydrogen bond in an end‐on configuration to the cyclen ring. In the side‐on structures, the N3 unit is bonded (in a side‐on configuration to the cyclen ring) to the metal through the terminal nitrogen atom of the azide group (N1), and through the other terminal nitrogen atom (N3) of the azide group by a hydrogen bond to a hydrogen atom of the cyclen ring. For all the alkali metals, the N3‐side‐on structure is lowest in energy. Addition of a second cyclen unit to [M(cyclen)N3] to form the sandwich compounds [M(cyclen)2N3] causes the bond strength between the metal and the N3 unit to decrease. It is hoped that this computational study will be a precursor to the synthesis and experimental study of these new macrocyclic compounds; structural parameters and infrared spectra were computed, which will assist future experimental work.  相似文献   
368.
369.
370.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号