首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   5篇
化学   91篇
力学   1篇
物理学   14篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   11篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   9篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
41.
Many well-established homogeneous separation free immunoassays rely on particulate label technologies. Particles generally contain a high concentration of the embedded label and they have a large surface area, which enables conjugation of a large amount of protein per particle. Eu(III)-chelate dyed nanoparticles have been successfully used as labels in heterogeneous and homogeneous immunoassays. In this study, we compared the characteristics of two homogeneous competitive immunoassays using either soluble Eu(III)-chelates or polystyrene particles containing Eu(III)-chelates as donors in a fluorescence resonance energy transfer based assay. The use of the particulate label significantly increased the obtained sensitized emission, which was generated by a single binding event. This was due to the extremely high specific activity of the nanoparticle label and also in some extent the longer Förster radius between the donor and the acceptor. The amount of the binder protein used in the assay could be decreased by 10-fold without impairing the obtainable sensitized emission, which subsequently led to improved assay sensitivity. The optimized assay using particulate donor had the lowest limit of detection (calculated using 3 × S.D. of the 0 nM standard) 50 pM of estradiol in the assay well, which was approximately 20-fold more sensitive than assays using soluble Eu(III)-chelates.  相似文献   
42.
43.
Desorption atmospheric pressure photoionization‐mass spectrometry (DAPPI‐MS) is a versatile surface analysis technique for a wide range of analytes, especially for neutral and non‐polar analytes. Here, a set of analytes typically found in environmental or food samples was analyzed by DAPPI‐MS. The set included five polyaromatic hydrocarbons (PAHs), one N‐PAH, one brominated flame retardant, and nine pesticides, which were studied with three different spray solvents: acetone and toluene in positive ion mode, and anisole in negative ion mode. The analytes showed [M + H]+, M+?, and [M–H]? ions as well as fragmentation and substitution products. Detection limits for the studied compounds ranged from 30 pg to 1 ng (from 0.14 to 5.6 pmol). To demonstrate the feasibility of the use of DAPPI‐MS two authentic samples – a circuit board and orange peel – and a spiked soil sample were analyzed. Tetrabromobisphenol A, imazalil, and PAHs were observed from the three above‐mentioned samples, respectively. The method is best suited for rapid screening analysis of environmental or food samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
44.
The most widely used ionization techniques in liquid chromatography-mass spectrometry (LC-MS) are electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). All three provide user friendly coupling of LC to MS. Achieving optimal LC-MS conditions is not always easy, however, owing to the complexity of ionization processes and the many parameters affecting mass spectrometric sensitivity and chromatographic performance. The selection of eluent composition requires particular attention since a solvent that is optimal for analyte ionization often does not provide acceptable retention and resolution in LC. Compromises must then be made between ionization and chromatographic separation efficiencies. The review presents an overview of studies concerning the effect of eluent composition on the ionization efficiency of ESI, APCI and APPI in LC-MS. Solvent characteristics are discussed in the light of ionization theories, and selected analytical applications are described. The aim is to provide practical background information for the development and optimization of LC-MS methods.  相似文献   
45.
In the current work, droplet-membrane-droplet liquid-phase microextraction (LPME) under totally stagnant conditions was presented for the first time. Subsequently, implementation of this concept on a microchip was demonstrated as a miniaturized, on-line sample preparation method. The performance level of the lab-on-a-chip system with integrated microextraction, capillary electrophoresis (CE) and laser-induced fluorescence (LIF) detection in a single miniaturized device was preliminarily investigated and characterized. Extractions under stagnant conditions were performed from 3.5 to 15 μL sample droplets, through a supported liquid membrane (SLM) sustained in the pores of a small piece of a flat polypropylene membrane, and into 3.5-15 μL of acceptor droplet. The basic model analytes pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted from alkaline sample droplets (pH 12), through 1-octanol as SLM, and into acidified acceptor droplets (pH 2) with recoveries ranging between 13 and 66% after 5 min of operation. For the acidic model analytes Bodipy FL C5 and Oregon Green 488, the pH conditions were reversed, utilizing an acidic sample droplet and an alkaline acceptor droplet, and 1-octanol as SLM. As a result, recoveries for Bodipy FL C5 and Oregon Green 488 from human urine were 15 and 25%, respectively.  相似文献   
46.
Kinetic data for organic reactions in various binary water-organic solvent mixtures were collected and quantitatively analysed in terms of linear-free-energy relationships by using tert-butyl chloride (2-chloro-2-methylpropane) solvolysis as the reference system. Linear similarity plots for these kinetic data were determined for solvent systems ranging from pure water mixtures up to considerable amount of cosolvent, and 161 similarity coefficients were calculated from slopes of these plots. The existence of these linear plots demonstrated that the solvent effects are of some common nature in all analysed reaction mixtures independent of the reaction type and the cosolvent used. Therefore it was concluded that the observed effects could be connected to the specific solvating properties of water, which govern reactivity even in significant dilution of water by an organic cosolvent. This conclusion was supported by the linear interrelationship between the slopes of similarity plots of different reactions, and hydrophobicity parameters log P of the reacting compounds. The relative solvent effects observed in binary water-organic solvent mixtures were for the first time directly related to the structure of reacting compounds.   相似文献   
47.
In this article, the effect of spray solvent on the analysis of selected lipids including fatty acids, fat-soluble vitamins, triacylglycerols, steroids, phospholipids, and sphingolipids has been studied by two different ambient mass spectrometry (MS) methods, desorption electrospray ionization-MS (DESI-MS) and desorption atmospheric pressure photoionization-MS (DAPPI-MS). The ionization of the lipids with DESI and DAPPI was strongly dependent on the spray solvent. In most cases, the lipids were detected as protonated or deprotonated molecules; however, other ions were also formed, such as adduct ions (in DESI), [M-H](+) ions (in DESI and DAPPI), radical ions (in DAPPI), and abundant oxidation products (in DESI and DAPPI). DAPPI provided efficient desorption and ionization for neutral and less polar as well as for ionic lipids but caused extensive fragmentation for larger and more labile compounds because of a thermal desorption process. DESI was more suitable for the analysis of the large and labile lipids, but the ionization efficiency for less polar lipids was poor. Both methods were successfully applied to the direct analysis of lipids from pharmaceutical and food products. Although DESI and DAPPI provide efficient analysis of lipids, the multiple and largely unpredictable ionization reactions may set challenges for routine lipid analysis with these methods.  相似文献   
48.
The chicken genome encodes several biotin-binding proteins, including avidin and avidin-related protein 4 (AVR4). In addition to D-biotin, avidin binds an azo dye compound, 4-hydroxyazobenzene-2-carboxylic acid (HABA), but the HABA-binding properties of AVR4 are not yet known. Differential scanning calorimetry, UV/visible spectroscopy, and molecular modeling were used to analyze the binding of 15 azo molecules to avidin and AVR4. Significant differences are seen in azo compound preferences for the two proteins, emphasizing the importance of the loop between strands beta3 and beta4 for azo ligand recognition; information on these loops is provided by the high-resolution (1.5 A) X-ray structure for avidin reported here. These results may be valuable in designing improved tools for avidin-based life science and nanobiotechnology applications.  相似文献   
49.
Silica nanoparticles are used in various applications including catalysts, paints and coatings. To reach an optimal performance via stability and functionality, in most cases, the surface properties of the particles are altered using complex procedures. Here we describe a simple method for surface modification of silica nanoparticles (SNP) using sequential adsorption of oppositely charged components. First, the SNPs were made cationic by adsorption of a cationic polyelectrolyte. Poly(allylamine hydrochloride) (PAH) and polyethyleneimine (PEI) were chosen as polycations to investigate the difference between a linear and a branched polyelectrolyte. Next, the dispersion of cationic SNPs was combined with an anionic alkyl ketene dimer (AKD) emulsion. Using this approach cationic, hydrophobic silica particle dispersions were produced. Dynamic light scattering, contact angle measurements and atomic force microscopy (AFM) were used for analyzing the particle and coating layer properties. The chosen polyelectrolyte affected the structure of the dispersion. The layer build-up was studied in detail using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption and layer properties of the cationic polyelectrolytes adsorbed on silica as well as the affinity of AKD to this layer were explored. The application possibilities of the modified particle dispersions were demonstrated by preparing paper and silica surfaces with tailored properties, such as elevated surface hydrophobicity, using an ultrathin coating layer.  相似文献   
50.
There is a clear need for novel in vitro models, especially for neuronal applications. Development of in vitro models is a multiparameter task consisting of cell‐, biomaterial‐, and environment‐related parameters. Here, three different human origin neuronal cell sources are studied and cultured in various hydrogel 3D scaffolds. For the efficient evaluation of complex results, an indexing method for data is developed and used in principal component analysis (PCA). It is found that no single hydrogel is superior to other hydrogels, and collagen I (Col1) and hyaluronan–poly(vinyl alcohol) (HA1‐PVA) gels are combined into an interpenetrating network (IPN) hydrogel. The IPN gel combines cell supportiveness of the collagen gel and stability of the HA1‐PVA gel. Moreover, cell adhesion is studied in particular and it is found that adhesion of neurons differs from that observed for fibroblasts. In conclusion, the HA1‐PVA‐col1 hydrogel is a suitable scaffold for neuronal cells and supports adhesion formation in 3D.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号