由于正交相五氧化二铌(T-Nb2O5)为ReO3型层状结构,锂、钠离子可以在其(001)平面快速脱嵌,而在[001]方向的传输一般较难。本研究通过原位透射电子显微镜(Transmission Electron Microscope,TEM)方法研究钠在T-Nb2O5纳米片(001)面内及[001]方向的钠离子电化学嵌入行为,发现由于纳米片晶体存在大量的位错和畴界,钠离子可通过这些缺陷穿越(001)面扩散,并进而在深层的(001)面内快速扩散。同时,本研究还发现刚合成的T-Nb2O5纳米片在[001]方向上存在调制结构,存在交替分布的压应变和张应变区域,而钠离子的嵌入可以调节这些应变分布。 相似文献
The photo-induced ultrafast electron dynamics in both anatase and rutile TiO\begin{document}$_{2}$\end{document} are investigated by using the Boltzmann transport equation with the explicit incorporation of electron-phonon scattering rates. All structural parameters required for dynamic simulations are obtained from ab initio calculations. The results show that although the longitudinal optical modes significantly affect the electron energy relaxation dynamics in both phases due to strong Fr?hlich-type couplings, the detailed relaxation mechanisms have obvious differences. In the case of a single band, the energy relaxation time in anatase is 24.0 fs, twice longer than 11.8 fs in rutile. This discrepancy is explained by the different diffusion distributions over the electronic Bloch states and different scattering contributions from acoustic modes in the two phases. As for the multiple-band situation involving the lowest six conduction bands, the predicted overall relaxation times are about 47 fs and 57 fs in anatase and rutile, respectively, very different from the case of the single band. The slower relaxation in rutile is attributed to the existence of multiple rate-controlled steps during the dynamic process. The present findings may be helpful to control the electron dynamics for designing efficient TiO\begin{document}$_{2}$\end{document}-based devices. 相似文献
Side-chain engineering has been demonstrated as an effective method for fine-tuning the optical, electrical, and morphological properties of organic semiconductors toward efficient organic solar cells (OSCs). In this work, three isomeric non-fullerene small molecule acceptors (SMAs), named BTP-4F-T2C8, BTP-4F-T2EH and BTP-4F-T3EH, with linear and branched alkyl chains substituted on the α or β positions of thiophene as the side chains, were synthesized and systematically investigated. The results demonstrate that the size and substitution position of alkyl side chains can greatly affect the electronic properties, molecular packing as well as crystallinity of the SMAs. After blending with donor polymer D18-Cl, the prominent device performance of 18.25% was achieved by the BTP-4F-T3EH-based solar cells, which is higher than those of the BTP-4F-T2EH-based (17.41%) and BTP-4F-T2C8-based (15.92%) ones. The enhanced performance of the BTP-4F-T3EH-based devices is attributed to its stronger crystallinity, higher electron mobility, suppressed biomolecular recombination, and the appropriate intermolecular interaction with the donor polymer. This work reveals that the side chain isomerization strategy can be a practical way in tuning the molecular packing and blend morphology for improving the performance of organic solar cells.
The application of dinuclear zinc catalysts in a dearomatization reaction has been developed. Catalytic asymmetric dearomatization [3+2] annulations of 2-nitrobenzofurans or 2-nitrobenzothiophenes with CF3-containing N-unprotected isatin-derived azomethine ylides catalyzed by dinuclear zinc catalysts are realized with excellent diastereomer ratios (dr) of >20 : 1 and enantiomeric excess (ee) of up to 99 %. This protocol provides a practical, straightforward access to structurally diverse pyrrolidinyl spirooxindoles containing a 2,3-fused-dihydrobenzofuran (or dihydrobenzothiphene) moiety, and four contiguous stereocenters. Reactions can be performed on a gram scale. The absolute configuration of products is confirmed by X-ray single crystal structure analysis, and a possible mechanism is proposed. 相似文献
Selective preparation of two-dimensional polymers (2DPs) and supramolecular polymers (2DSPs) with defined thickness is crucially important for controlling and maximizing their functions, yet it has remained as a synthetic challenge. In the past decade, several approaches have been developed to allow selective preparation of discrete monolayer 2DPs and 2DSPs. Recently, crystal exfoliation and self-assembly strategies have been employed to successfully prepare bilayer 2DP and 2DSP, which represent the first step towards the controlled “growth” of 2D polymers from the thinnest monolayers to thicker few-layers along the third dimension. This Concept review discusses the concept of accurate synthesis of 2D polymers with defined layers. Advances in this research area will pave the way to rational synthetic strategies for 2D polymers with controlled thickness. 相似文献
The study of multiple complex catalytic mechanisms is currently one of the great scientific issues for the application of high-energy solid propellants. Two novel heterobimetallic metal-organic frameworks (MOFs), Ba4Pb4(CH3CO2)8 [(CH6CO2)4Pb](CH3CO2)4 (PbBa-MOF) and Ba2Ni(CO2H)6(OH2)4 (NiBa-MOF), were prepared via the solvothermal method, and their structures and composition were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR) techniques and N2 adsorption/desorption experiment. The thermal decomposition characteristics of the two MOFs and their catalytic performances on the hexanitro hexaazaisowurtzitane (CL-20) thermolysis were also studied by differential scanning calorimetr (DSC) and thermogravimetric-fourier transform infrared spectroscopy-mass spectrum (TG-FTIR-MS) methods. The results showed that the NiBa-MOF presented a lower initial decomposition temperature than the PbBa-MOF, and the difference of the MOFs structures affected the starting point of thermal decomposition. Compared with the pure CL-20, the thermolysis peak temperature and apparent activation energy (Ea) of the CL-20/PbBa-MOF mixture were decreased by 2.2 °C and 23.76 kJ?mol?1, respectively. The Ea of CL-20/NiBa-MOF mixture was lower and 42.01 kJ?mol?1, indicating the better catalytic activity of NiBa-MOF. The thermolysis catalytic mechanisms were studied by analyzing the transformation of gas products during the pyrolysis of mixtures. The effect of these two MOFs on the CL-20 thermolysis is primarily owing to the strong attraction of metal cations to electronics, bimetallic synergistic catalysis, and the release of active free radicals. Furthermore, the laser ignition and flame propagation features showed that these two MOFs reduced the minimum ignition power density and ignition delay time of the CL-20, and the flame becomes brighter and more luminous. The influence of the two MOFs on the flame bright spot of CL-20 based mixtures was described. 相似文献
The hypochlorous acid (HCIO) was synthesized from seawater by the Pt/WO3 photocatalyst under visible-light irradiation. The effect of WO3 morphology and Pt loading on the performance of the composite photocatalyst for the production of HCIO has been studied in detail. The study found that among the series of materials, hollow WO3 microspheres with a diameter of about 3 μm loaded with 1.0 wt% Pt have the best HCIO production performance. Over it, 14.52 μM of HClO (1.24 mg/L of free chlorine) was accumulated in 0.5 M NaCl solution after 2 h of visible-light photoirradiation. What is more, the concentration of HClO can reach 4.34 μM (0.354 mg/L free chlorine) in natural seawater for 1 h using this Pt/WO3 photocatalyst. Under visible-light irradiation, the Pt/WO3 photocatalyst has a good broad-spectrum antibacterial activity and the activity of inhibiting marine fouling algae. The Pt/WO3 photocatalyst has high stability and reusability. All these characteristics are conducive to the application in the field of marine antifouling. Moreover, the photocatalytic reaction mechanism was evaluated by studying the photoelectrochemical properties of Pt/WO3/FTO. This research provides a new strategy for replacing the traditional electrolytic marine antifouling system with the visible-light-catalyzed HClO production system.