首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   8篇
  国内免费   3篇
化学   187篇
力学   4篇
数学   11篇
物理学   32篇
  2022年   7篇
  2021年   15篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   9篇
  2013年   30篇
  2012年   13篇
  2011年   10篇
  2010年   6篇
  2009年   9篇
  2008年   13篇
  2007年   10篇
  2006年   12篇
  2005年   15篇
  2004年   19篇
  2003年   8篇
  2002年   8篇
  2000年   4篇
  1999年   4篇
  1997年   4篇
  1996年   3篇
  1993年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1963年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
81.
The master equation (ME) provides a powerful technique for modeling reactions that involve at least one potential energy well. It can be widely applied to reactions with several connected energy wells and multiple product channels. The application of the technique is reviewed by reference to the H + SO(2) reaction, where phenomenological rate constants for use, for example, in a combustion model can be extracted through an analysis of the eigenvalues and eigenvectors of the collision matrix, M, that describes formation of the adducts HSO(2) and HOSO from the source H + SO(2), collisional energy transfer in the adduct wells and reaction via the product channel (sink) OH + SO. The approach is extended to systems with more than one sink and it is demonstrated that macroscopic (phenomenological) rate coefficients derived from a ME obey detailed balance if the original ME is appropriately constructed. The method has been applied to the 1-, 2-pentyl radical system, that includes isomerisation and dissociation via two channels to form C(3)H(6) + C(2)H(5) and C(2)H(4) + C(3)H(7). The calculations clearly demonstrate the importance of indirect dissociation channels, in which an isomer can dissociate to form the product set to which it is not directly connected, e.g. formation of C(3)H(6) + C(2)H(5) from 1-pentyl, via the energized states of 2-pentyl. As in previous studies of pentyl dissociation, there is a convergence of the chemically significant eigenvalues and the internal energy relaxation eigenvalues above approximately 1000 K; the consequences of this convergence are discussed.  相似文献   
82.
83.
The isothermal and non-isothermal degradation of a typical styrenated phthalic acid-maleic acid-propylene glycol polyester were measured. Non-isothermal and isothermal kinetic analyses were performed on the various degradation steps observed. The values of the non-isothermal and the isothermal kinetic parameters are in good agreement.  相似文献   
84.
Using static oxygen-bomb calorimetry, the standard enthalpies of combustion of the 2,4-and 2,6-isomers of dinitrophenol have been determined as ?2697.22 and ?2723.08 ± 3.18 kJ mole?1, respectively. Standard enthalpies of formation have been calculated as ?235.50 and ?209.64 ± 3.27 kJ mole?1, respectively.  相似文献   
85.
The assessment of an expanded graphite‐Ag‐zeolite‐epoxy composite (EG‐Z‐Ag‐Epoxy) electrode for the determination of 4‐chlorophenol (4‐CP) is described and compared to the corresponding expanded graphite‐epoxy composite (EG‐Epoxy) electrode. Cyclic voltammetry was used to characterize the electrochemical behavior and determination of 4‐CP at both electrodes in 0.1 M Na2SO4 and 0.1 M NaOH supporting electrolytes. A substantial enhancement of sensitivity for the determination of 4‐CP at the EG‐Z‐Ag‐Epoxy electrode was reached by applying a chemical preconcentration step prior to voltammetric quantification. Also, under these last conditions the lowest limit of detection of 1 μM illustrates the analytical versatility of this electrode in a concentration range where aquatic 4‐chlorophenol pollution is known to occur.  相似文献   
86.
Molecularly imprinted polymers (MIPs) are synthetic antibody mimics capable of specific molecular recognition. Advantageously, they are more stable, easy to tailor for a given application and less expensive than antibodies. These plastic antibodies are raising increasing interest and one relatively unexplored domain in which they could outplay these advantages particularly well is cosmetics. Here, we present the use of a MIP as an active ingredient of a cosmetic product, for suppressing body odors. In a dermo‐cosmetic formulation, the MIP captures selectively the precursors of malodorous compounds, amidst a multitude of other molecules present in human sweat. These results pave the way to the fabrication of a novel generation of MIPs with improved selectivities in highly complex aqueous environments, and should be applicable to biotechnological and biomedical areas as well.  相似文献   
87.
The aqueous phase behavior of mixtures of 1-glycerol monooleate (GMO) and its ether analogue, 1-glyceryl monooleyl ether (GME) has been investigated by a combination of polarized microscopy, X-ray diffraction, and NMR techniques. Three phase diagrams of the ternary GMO/GME/water system have been constructed at 25, 40, and 55 degrees C. The results demonstrate that the increasing amount of GME favors the formation of the reversed phases, evidenced by the transformation of the lamellar and bicontinuous cubic liquid crystalline phases of the binary GMO/water system into reversed micellar or reversed hexagonal phases. For a particular liquid crystalline phase, increasing the GME content has no effect on the structural characteristics and hydration properties, thus suggesting ideal mixing with GMO. Investigations of dispersed nanoparticle samples using shear and a polymeric stabilizer, Pluronic F127, show the possibility of forming two different kinds of bicontinuous cubic phase nanoparticles by simply changing the GMO/GME ratio. Also NMR self-diffusion measurements confirm that the block copolymer, Pluronic F127, used to facilitate dispersion formation, is associated with nanoparticles and provides steric stabilization.  相似文献   
88.
Pure and mixed monolayers of a synthetic peptide, GPR-i3n, derived from the third intracellular loop of the alpha2 adrenergic receptor and a shorter inactive oligopeptide, N-formyl-(Gly)3-(Cys) (called 3GC), were prepared on gold surfaces. The mixing ratio of the GPR-i3n and 3GC was used to control G-protein binding capability. The GPR-i3n peptide is specially designed for bovine G-protein selectivity and has been proven to have high affinity to G-proteins [Vahlberg, C.; Petoral, R. M., Jr.; Lindell, C.; Broo, K.; Uvdal, K. Langmuir 2006, 22 (17), 7260-7264]. Pure 3GC monolayers show very low protein adsorption capability. In this study, 3GC is chosen as a coadsorbent, with the aim to induce molecular conformational changes during monolayer formation to enhance G-protein adsorption. A full characterization of the mixed monolayers was done. The monolayer thickness and the mass-related surface coverage for both GPR-i3n and 3GC were investigated using radio labeling. The GPR-i3n was labeled by 125I-targeting tyrosine, and the activity was measured by using radioimmunoassay (RIA). The formation and chemical composition of GPR-i3n and 3GC monolayers were investigated using X-ray photoelectron spectroscopy, and it is shown that both GPR-i3n and 3GC bind chemically to the gold surface. The interaction between the mixed monolayers and G-proteins was investigated by means of real-time surface plasmon resonance. There is a higher protein binding capacity to the monolayer when the GPR-i3n peptide is intermixed with the 3GC coadsorbent, despite the fact that the 3GC itself has a very low G-protein binding capability. This supports a molecular reorientation at the surface, while 3GC is intermixed with GPR-i3n.  相似文献   
89.
Antimicrobial resistance is one of the major public health threats at the global level, urging the search for new antimicrobial molecules. The fluorene nucleus is a component of different bioactive compounds, exhibiting diverse pharmacological actions. The present work describes the synthesis, chemical structure elucidation, and bioactivity of new O-aryl-carbamoyl-oxymino-fluorene derivatives and the contribution of iron oxide nanoparticles to enhance the desired biological activity. The antimicrobial activity assessed against three bacterial and fungal strains, in suspension and biofilm growth state, using a quantitative assay, revealed that the nature of substituents on the aryl moiety are determinant for both the spectrum and intensity of the inhibitory effect. The electron-withdrawing inductive effect of chlorine atoms enhanced the activity against planktonic and adhered Staphylococcus aureus, while the +I effect of the methyl group enhanced the anti-fungal activity against Candida albicans strain. The magnetite nanoparticles have substantially improved the antimicrobial activity of the new compounds against planktonic microorganisms. The obtained compounds, as well as the magnetic core@shell nanostructures loaded with these compounds have a promising potential for the development of novel antimicrobial strategies.  相似文献   
90.
The purpose of this paper was to characterize and investigate the antimicrobial potential of Amorpha fruticosa fruits essential oil (EO). The EO was extracted by hydrodistillation, analyzed by GC-MS, and then evaluated for its interaction with microbial and mammalian cells. The antimicrobial activity was assessed against bacterial and fungal strains, in a planktonic and adherent growth state, using qualitative and quantitative assays. The main components identified in A. fruticosa fruits EO were δ-cadinene, γ-muurolene, and α-muurolene. The Gram-positive strains proved to be more susceptible than Gram-negative bacteria and fungal strains. The EO exhibited good antibiofilm activity, inhibiting the microbial adherence to the inert (96-well plates and Foley catheter section) and cellular substrata. The flow cytometry analysis revealed as one of the possible mechanisms of antimicrobial action the alteration of cell membrane hydrophobicity. The cytotoxicity on the L929 cell line occurred at concentrations higher than 0.3 mg/mL. Taken together, our results demonstrate that A. fruticosa fruits EO contains active compounds with selective inhibitory effect on different microbial strains in planktonic and biofilm growth state, explained at least partially by the interference with microbial membranes due to their hydrophobic character.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号